summaryrefslogtreecommitdiff
path: root/examples/shufflenetv2.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/shufflenetv2.cpp')
-rw-r--r--examples/shufflenetv2.cpp125
1 files changed, 125 insertions, 0 deletions
diff --git a/examples/shufflenetv2.cpp b/examples/shufflenetv2.cpp
new file mode 100644
index 0000000..eaf3ec8
--- /dev/null
+++ b/examples/shufflenetv2.cpp
@@ -0,0 +1,125 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include "net.h"
+
+#include <algorithm>
+#if defined(USE_NCNN_SIMPLEOCV)
+#include "simpleocv.h"
+#else
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#endif
+#include <stdio.h>
+#include <vector>
+
+static int detect_shufflenetv2(const cv::Mat& bgr, std::vector<float>& cls_scores)
+{
+ ncnn::Net shufflenetv2;
+
+ shufflenetv2.opt.use_vulkan_compute = true;
+
+ // https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe
+ // models can be downloaded from https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases
+ if (shufflenetv2.load_param("shufflenet_v2_x0.5.param"))
+ exit(-1);
+ if (shufflenetv2.load_model("shufflenet_v2_x0.5.bin"))
+ exit(-1);
+
+ ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 224, 224);
+
+ const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
+ in.substract_mean_normalize(0, norm_vals);
+
+ ncnn::Extractor ex = shufflenetv2.create_extractor();
+
+ ex.input("data", in);
+
+ ncnn::Mat out;
+ ex.extract("fc", out);
+
+ // manually call softmax on the fc output
+ // convert result into probability
+ // skip if your model already has softmax operation
+ {
+ ncnn::Layer* softmax = ncnn::create_layer("Softmax");
+
+ ncnn::ParamDict pd;
+ softmax->load_param(pd);
+
+ softmax->forward_inplace(out, shufflenetv2.opt);
+
+ delete softmax;
+ }
+
+ out = out.reshape(out.w * out.h * out.c);
+
+ cls_scores.resize(out.w);
+ for (int j = 0; j < out.w; j++)
+ {
+ cls_scores[j] = out[j];
+ }
+
+ return 0;
+}
+
+static int print_topk(const std::vector<float>& cls_scores, int topk)
+{
+ // partial sort topk with index
+ int size = cls_scores.size();
+ std::vector<std::pair<float, int> > vec;
+ vec.resize(size);
+ for (int i = 0; i < size; i++)
+ {
+ vec[i] = std::make_pair(cls_scores[i], i);
+ }
+
+ std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
+ std::greater<std::pair<float, int> >());
+
+ // print topk and score
+ for (int i = 0; i < topk; i++)
+ {
+ float score = vec[i].first;
+ int index = vec[i].second;
+ fprintf(stderr, "%d = %f\n", index, score);
+ }
+
+ return 0;
+}
+
+int main(int argc, char** argv)
+{
+ if (argc != 2)
+ {
+ fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
+ return -1;
+ }
+
+ const char* imagepath = argv[1];
+
+ cv::Mat m = cv::imread(imagepath, 1);
+ if (m.empty())
+ {
+ fprintf(stderr, "cv::imread %s failed\n", imagepath);
+ return -1;
+ }
+
+ std::vector<float> cls_scores;
+ detect_shufflenetv2(m, cls_scores);
+
+ print_topk(cls_scores, 3);
+
+ return 0;
+}