diff options
Diffstat (limited to 'examples/p2pnet.cpp')
-rw-r--r-- | examples/p2pnet.cpp | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/examples/p2pnet.cpp b/examples/p2pnet.cpp new file mode 100644 index 0000000..cee3077 --- /dev/null +++ b/examples/p2pnet.cpp @@ -0,0 +1,242 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "net.h" +#if defined(USE_NCNN_SIMPLEOCV) +#include "simpleocv.h" +#else +#include <opencv2/core/core.hpp> +#include <opencv2/highgui/highgui.hpp> +#include <opencv2/imgproc/imgproc.hpp> +#endif +#include <stdlib.h> +#include <float.h> +#include <stdio.h> +#include <vector> + +struct CrowdPoint +{ + cv::Point pt; + float prob; +}; + +static void shift(int w, int h, int stride, std::vector<float> anchor_points, std::vector<float>& shifted_anchor_points) +{ + std::vector<float> x_, y_; + for (int i = 0; i < w; i++) + { + float x = (i + 0.5) * stride; + x_.push_back(x); + } + for (int i = 0; i < h; i++) + { + float y = (i + 0.5) * stride; + y_.push_back(y); + } + + std::vector<float> shift_x((size_t)w * h, 0), shift_y((size_t)w * h, 0); + for (int i = 0; i < h; i++) + { + for (int j = 0; j < w; j++) + { + shift_x[i * w + j] = x_[j]; + } + } + for (int i = 0; i < h; i++) + { + for (int j = 0; j < w; j++) + { + shift_y[i * w + j] = y_[i]; + } + } + + std::vector<float> shifts((size_t)w * h * 2, 0); + for (int i = 0; i < w * h; i++) + { + shifts[i * 2] = shift_x[i]; + shifts[i * 2 + 1] = shift_y[i]; + } + + shifted_anchor_points.resize((size_t)2 * w * h * anchor_points.size() / 2, 0); + for (int i = 0; i < w * h; i++) + { + for (int j = 0; j < anchor_points.size() / 2; j++) + { + float x = anchor_points[j * 2] + shifts[i * 2]; + float y = anchor_points[j * 2 + 1] + shifts[i * 2 + 1]; + shifted_anchor_points[i * anchor_points.size() / 2 * 2 + j * 2] = x; + shifted_anchor_points[i * anchor_points.size() / 2 * 2 + j * 2 + 1] = y; + } + } +} +static void generate_anchor_points(int stride, int row, int line, std::vector<float>& anchor_points) +{ + float row_step = (float)stride / row; + float line_step = (float)stride / line; + + std::vector<float> x_, y_; + for (int i = 1; i < line + 1; i++) + { + float x = (i - 0.5) * line_step - stride / 2; + x_.push_back(x); + } + for (int i = 1; i < row + 1; i++) + { + float y = (i - 0.5) * row_step - stride / 2; + y_.push_back(y); + } + std::vector<float> shift_x((size_t)row * line, 0), shift_y((size_t)row * line, 0); + for (int i = 0; i < row; i++) + { + for (int j = 0; j < line; j++) + { + shift_x[i * line + j] = x_[j]; + } + } + for (int i = 0; i < row; i++) + { + for (int j = 0; j < line; j++) + { + shift_y[i * line + j] = y_[i]; + } + } + anchor_points.resize((size_t)row * line * 2, 0); + for (int i = 0; i < row * line; i++) + { + float x = shift_x[i]; + float y = shift_y[i]; + anchor_points[i * 2] = x; + anchor_points[i * 2 + 1] = y; + } +} +static void generate_anchor_points(int img_w, int img_h, std::vector<int> pyramid_levels, int row, int line, std::vector<float>& all_anchor_points) +{ + std::vector<std::pair<int, int> > image_shapes; + std::vector<int> strides; + for (int i = 0; i < pyramid_levels.size(); i++) + { + int new_h = std::floor((img_h + std::pow(2, pyramid_levels[i]) - 1) / std::pow(2, pyramid_levels[i])); + int new_w = std::floor((img_w + std::pow(2, pyramid_levels[i]) - 1) / std::pow(2, pyramid_levels[i])); + image_shapes.push_back(std::make_pair(new_w, new_h)); + strides.push_back(std::pow(2, pyramid_levels[i])); + } + + all_anchor_points.clear(); + for (int i = 0; i < pyramid_levels.size(); i++) + { + std::vector<float> anchor_points; + generate_anchor_points(std::pow(2, pyramid_levels[i]), row, line, anchor_points); + std::vector<float> shifted_anchor_points; + shift(image_shapes[i].first, image_shapes[i].second, strides[i], anchor_points, shifted_anchor_points); + all_anchor_points.insert(all_anchor_points.end(), shifted_anchor_points.begin(), shifted_anchor_points.end()); + } +} + +static int detect_crowd(const cv::Mat& bgr, std::vector<CrowdPoint>& crowd_points) +{ + ncnn::Option opt; + opt.num_threads = 4; + opt.use_vulkan_compute = false; + opt.use_bf16_storage = false; + + ncnn::Net net; + net.opt = opt; + + // model is converted from + // https://github.com/TencentYoutuResearch/CrowdCounting-P2PNet + // the ncnn model https://pan.baidu.com/s/1O1CBgvY6yJkrK8Npxx3VMg pwd: ezhx + if (net.load_param("p2pnet.param")) + exit(-1); + if (net.load_model("p2pnet.bin")) + exit(-1); + + int width = bgr.cols; + int height = bgr.rows; + + int new_width = width / 128 * 128; + int new_height = height / 128 * 128; + + ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, width, height, new_width, new_height); + + std::vector<int> pyramid_levels(1, 3); + std::vector<float> all_anchor_points; + generate_anchor_points(in.w, in.h, pyramid_levels, 2, 2, all_anchor_points); + + ncnn::Mat anchor_points = ncnn::Mat(2, all_anchor_points.size() / 2, all_anchor_points.data()); + + ncnn::Extractor ex = net.create_extractor(); + const float mean_vals1[3] = {123.675f, 116.28f, 103.53f}; + const float norm_vals1[3] = {0.01712475f, 0.0175f, 0.01742919f}; + + in.substract_mean_normalize(mean_vals1, norm_vals1); + + ex.input("input", in); + ex.input("anchor", anchor_points); + + ncnn::Mat score, points; + ex.extract("pred_scores", score); + ex.extract("pred_points", points); + + for (int i = 0; i < points.h; i++) + { + float* score_data = score.row(i); + float* points_data = points.row(i); + CrowdPoint cp; + int x = points_data[0] / new_width * width; + int y = points_data[1] / new_height * height; + cp.pt = cv::Point(x, y); + cp.prob = score_data[1]; + crowd_points.push_back(cp); + } + + return 0; +} + +static void draw_result(const cv::Mat& bgr, const std::vector<CrowdPoint>& crowd_points) +{ + cv::Mat image = bgr.clone(); + const float threshold = 0.5f; + for (int i = 0; i < crowd_points.size(); i++) + { + if (crowd_points[i].prob > threshold) + { + cv::circle(image, crowd_points[i].pt, 4, cv::Scalar(0, 0, 255), -1, 8, 0); + } + } + cv::imshow("image", image); + cv::waitKey(); +} +int main(int argc, char** argv) +{ + if (argc != 2) + { + fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); + return -1; + } + + const char* imagepath = argv[1]; + + cv::Mat bgr = cv::imread(imagepath, 1); + if (bgr.empty()) + { + fprintf(stderr, "cv::imread %s failed\n", imagepath); + return -1; + } + + std::vector<CrowdPoint> crowd_points; + detect_crowd(bgr, crowd_points); + draw_result(bgr, crowd_points); + + return 0; +} |