diff options
Diffstat (limited to 'examples/nanodetplus_pnnx.cpp')
-rw-r--r-- | examples/nanodetplus_pnnx.cpp | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/examples/nanodetplus_pnnx.cpp b/examples/nanodetplus_pnnx.cpp new file mode 100644 index 0000000..7aa3ed1 --- /dev/null +++ b/examples/nanodetplus_pnnx.cpp @@ -0,0 +1,431 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "net.h" + +#if defined(USE_NCNN_SIMPLEOCV) +#include "simpleocv.h" +#else +#include <opencv2/core/core.hpp> +#include <opencv2/highgui/highgui.hpp> +#include <opencv2/imgproc/imgproc.hpp> +#endif +#include <stdlib.h> +#include <float.h> +#include <stdio.h> +#include <vector> + +struct Object +{ + cv::Rect_<float> rect; + int label; + float prob; +}; + +static inline float intersection_area(const Object& a, const Object& b) +{ + cv::Rect_<float> inter = a.rect & b.rect; + return inter.area(); +} + +static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) +{ + int i = left; + int j = right; + float p = faceobjects[(left + right) / 2].prob; + + while (i <= j) + { + while (faceobjects[i].prob > p) + i++; + + while (faceobjects[j].prob < p) + j--; + + if (i <= j) + { + // swap + std::swap(faceobjects[i], faceobjects[j]); + + i++; + j--; + } + } + + #pragma omp parallel sections + { + #pragma omp section + { + if (left < j) qsort_descent_inplace(faceobjects, left, j); + } + #pragma omp section + { + if (i < right) qsort_descent_inplace(faceobjects, i, right); + } + } +} + +static void qsort_descent_inplace(std::vector<Object>& faceobjects) +{ + if (faceobjects.empty()) + return; + + qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); +} + +static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false) +{ + picked.clear(); + + const int n = faceobjects.size(); + + std::vector<float> areas(n); + for (int i = 0; i < n; i++) + { + areas[i] = faceobjects[i].rect.area(); + } + + for (int i = 0; i < n; i++) + { + const Object& a = faceobjects[i]; + + int keep = 1; + for (int j = 0; j < (int)picked.size(); j++) + { + const Object& b = faceobjects[picked[j]]; + + if (!agnostic && a.label != b.label) + continue; + + // intersection over union + float inter_area = intersection_area(a, b); + float union_area = areas[i] + areas[picked[j]] - inter_area; + // float IoU = inter_area / union_area + if (inter_area / union_area > nms_threshold) + keep = 0; + } + + if (keep) + picked.push_back(i); + } +} + +static inline float sigmoid(float x) +{ + return 1.0f / (1.0f + exp(-x)); +} + +static void generate_proposals(const ncnn::Mat& pred, int stride, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects) +{ + const int num_grid = pred.h; + + int num_grid_x = pred.w; + int num_grid_y = pred.h; + + const int num_class = 80; // number of classes. 80 for COCO + const int reg_max_1 = (pred.c - num_class) / 4; + + for (int i = 0; i < num_grid_y; i++) + { + for (int j = 0; j < num_grid_x; j++) + { + // find label with max score + int label = -1; + float score = -FLT_MAX; + for (int k = 0; k < num_class; k++) + { + float s = pred.channel(k).row(i)[j]; + if (s > score) + { + label = k; + score = s; + } + } + + score = sigmoid(score); + + if (score >= prob_threshold) + { + ncnn::Mat bbox_pred(reg_max_1, 4); + for (int k = 0; k < reg_max_1 * 4; k++) + { + bbox_pred[k] = pred.channel(num_class + k).row(i)[j]; + } + { + ncnn::Layer* softmax = ncnn::create_layer("Softmax"); + + ncnn::ParamDict pd; + pd.set(0, 1); // axis + pd.set(1, 1); + softmax->load_param(pd); + + ncnn::Option opt; + opt.num_threads = 1; + opt.use_packing_layout = false; + + softmax->create_pipeline(opt); + + softmax->forward_inplace(bbox_pred, opt); + + softmax->destroy_pipeline(opt); + + delete softmax; + } + + float pred_ltrb[4]; + for (int k = 0; k < 4; k++) + { + float dis = 0.f; + const float* dis_after_sm = bbox_pred.row(k); + for (int l = 0; l < reg_max_1; l++) + { + dis += l * dis_after_sm[l]; + } + + pred_ltrb[k] = dis * stride; + } + + float pb_cx = j * stride; + float pb_cy = i * stride; + + float x0 = pb_cx - pred_ltrb[0]; + float y0 = pb_cy - pred_ltrb[1]; + float x1 = pb_cx + pred_ltrb[2]; + float y1 = pb_cy + pred_ltrb[3]; + + Object obj; + obj.rect.x = x0; + obj.rect.y = y0; + obj.rect.width = x1 - x0; + obj.rect.height = y1 - y0; + obj.label = label; + obj.prob = score; + + objects.push_back(obj); + } + } + } +} + +static int detect_nanodet(const cv::Mat& bgr, std::vector<Object>& objects) +{ + ncnn::Net nanodet; + + nanodet.opt.use_vulkan_compute = true; + // nanodet.opt.use_bf16_storage = true; + + // original pretrained model from https://github.com/RangiLyu/nanodet + // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models + // nanodet.load_param("nanodet-plus-m_320.torchscript.ncnn.param"); + // nanodet.load_model("nanodet-plus-m_320.torchscript.ncnn.bin"); + if (nanodet.load_param("nanodet-plus-m_416.torchscript.ncnn.param")) + exit(-1); + if (nanodet.load_model("nanodet-plus-m_416.torchscript.ncnn.bin")) + exit(-1); + + int width = bgr.cols; + int height = bgr.rows; + + // const int target_size = 320; + const int target_size = 416; + const float prob_threshold = 0.4f; + const float nms_threshold = 0.5f; + + // pad to multiple of 32 + int w = width; + int h = height; + float scale = 1.f; + if (w > h) + { + scale = (float)target_size / w; + w = target_size; + h = h * scale; + } + else + { + scale = (float)target_size / h; + h = target_size; + w = w * scale; + } + + ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, width, height, w, h); + + // pad to target_size rectangle + int wpad = (w + 31) / 32 * 32 - w; + int hpad = (h + 31) / 32 * 32 - h; + ncnn::Mat in_pad; + ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f); + + const float mean_vals[3] = {103.53f, 116.28f, 123.675f}; + const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f}; + in_pad.substract_mean_normalize(mean_vals, norm_vals); + + ncnn::Extractor ex = nanodet.create_extractor(); + + ex.input("in0", in_pad); + + std::vector<Object> proposals; + + // stride 8 + { + ncnn::Mat pred; + ex.extract("231", pred); + + std::vector<Object> objects8; + generate_proposals(pred, 8, in_pad, prob_threshold, objects8); + + proposals.insert(proposals.end(), objects8.begin(), objects8.end()); + } + + // stride 16 + { + ncnn::Mat pred; + ex.extract("228", pred); + + std::vector<Object> objects16; + generate_proposals(pred, 16, in_pad, prob_threshold, objects16); + + proposals.insert(proposals.end(), objects16.begin(), objects16.end()); + } + + // stride 32 + { + ncnn::Mat pred; + ex.extract("225", pred); + + std::vector<Object> objects32; + generate_proposals(pred, 32, in_pad, prob_threshold, objects32); + + proposals.insert(proposals.end(), objects32.begin(), objects32.end()); + } + + // stride 64 + { + ncnn::Mat pred; + ex.extract("222", pred); + + std::vector<Object> objects64; + generate_proposals(pred, 64, in_pad, prob_threshold, objects64); + + proposals.insert(proposals.end(), objects64.begin(), objects64.end()); + } + + // sort all proposals by score from highest to lowest + qsort_descent_inplace(proposals); + + // apply nms with nms_threshold + std::vector<int> picked; + nms_sorted_bboxes(proposals, picked, nms_threshold); + + int count = picked.size(); + + objects.resize(count); + for (int i = 0; i < count; i++) + { + objects[i] = proposals[picked[i]]; + + // adjust offset to original unpadded + float x0 = (objects[i].rect.x - (wpad / 2)) / scale; + float y0 = (objects[i].rect.y - (hpad / 2)) / scale; + float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale; + float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale; + + // clip + x0 = std::max(std::min(x0, (float)(width - 1)), 0.f); + y0 = std::max(std::min(y0, (float)(height - 1)), 0.f); + x1 = std::max(std::min(x1, (float)(width - 1)), 0.f); + y1 = std::max(std::min(y1, (float)(height - 1)), 0.f); + + objects[i].rect.x = x0; + objects[i].rect.y = y0; + objects[i].rect.width = x1 - x0; + objects[i].rect.height = y1 - y0; + } + + return 0; +} + +static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) +{ + static const char* class_names[] = { + "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", + "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", + "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", + "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", + "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", + "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", + "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", + "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", + "hair drier", "toothbrush" + }; + + cv::Mat image = bgr.clone(); + + for (size_t i = 0; i < objects.size(); i++) + { + const Object& obj = objects[i]; + + fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, + obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); + + cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); + + char text[256]; + sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); + + int baseLine = 0; + cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); + + int x = obj.rect.x; + int y = obj.rect.y - label_size.height - baseLine; + if (y < 0) + y = 0; + if (x + label_size.width > image.cols) + x = image.cols - label_size.width; + + cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), + cv::Scalar(255, 255, 255), -1); + + cv::putText(image, text, cv::Point(x, y + label_size.height), + cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); + } + + cv::imshow("image", image); + cv::waitKey(0); +} + +int main(int argc, char** argv) +{ + if (argc != 2) + { + fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); + return -1; + } + + const char* imagepath = argv[1]; + + cv::Mat m = cv::imread(imagepath, 1); + if (m.empty()) + { + fprintf(stderr, "cv::imread %s failed\n", imagepath); + return -1; + } + + std::vector<Object> objects; + detect_nanodet(m, objects); + + draw_objects(m, objects); + + return 0; +} |