summaryrefslogtreecommitdiff
path: root/examples/nanodetplus_pnnx.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/nanodetplus_pnnx.cpp')
-rw-r--r--examples/nanodetplus_pnnx.cpp431
1 files changed, 431 insertions, 0 deletions
diff --git a/examples/nanodetplus_pnnx.cpp b/examples/nanodetplus_pnnx.cpp
new file mode 100644
index 0000000..7aa3ed1
--- /dev/null
+++ b/examples/nanodetplus_pnnx.cpp
@@ -0,0 +1,431 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include "net.h"
+
+#if defined(USE_NCNN_SIMPLEOCV)
+#include "simpleocv.h"
+#else
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#include <opencv2/imgproc/imgproc.hpp>
+#endif
+#include <stdlib.h>
+#include <float.h>
+#include <stdio.h>
+#include <vector>
+
+struct Object
+{
+ cv::Rect_<float> rect;
+ int label;
+ float prob;
+};
+
+static inline float intersection_area(const Object& a, const Object& b)
+{
+ cv::Rect_<float> inter = a.rect & b.rect;
+ return inter.area();
+}
+
+static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
+{
+ int i = left;
+ int j = right;
+ float p = faceobjects[(left + right) / 2].prob;
+
+ while (i <= j)
+ {
+ while (faceobjects[i].prob > p)
+ i++;
+
+ while (faceobjects[j].prob < p)
+ j--;
+
+ if (i <= j)
+ {
+ // swap
+ std::swap(faceobjects[i], faceobjects[j]);
+
+ i++;
+ j--;
+ }
+ }
+
+ #pragma omp parallel sections
+ {
+ #pragma omp section
+ {
+ if (left < j) qsort_descent_inplace(faceobjects, left, j);
+ }
+ #pragma omp section
+ {
+ if (i < right) qsort_descent_inplace(faceobjects, i, right);
+ }
+ }
+}
+
+static void qsort_descent_inplace(std::vector<Object>& faceobjects)
+{
+ if (faceobjects.empty())
+ return;
+
+ qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
+}
+
+static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
+{
+ picked.clear();
+
+ const int n = faceobjects.size();
+
+ std::vector<float> areas(n);
+ for (int i = 0; i < n; i++)
+ {
+ areas[i] = faceobjects[i].rect.area();
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ const Object& a = faceobjects[i];
+
+ int keep = 1;
+ for (int j = 0; j < (int)picked.size(); j++)
+ {
+ const Object& b = faceobjects[picked[j]];
+
+ if (!agnostic && a.label != b.label)
+ continue;
+
+ // intersection over union
+ float inter_area = intersection_area(a, b);
+ float union_area = areas[i] + areas[picked[j]] - inter_area;
+ // float IoU = inter_area / union_area
+ if (inter_area / union_area > nms_threshold)
+ keep = 0;
+ }
+
+ if (keep)
+ picked.push_back(i);
+ }
+}
+
+static inline float sigmoid(float x)
+{
+ return 1.0f / (1.0f + exp(-x));
+}
+
+static void generate_proposals(const ncnn::Mat& pred, int stride, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects)
+{
+ const int num_grid = pred.h;
+
+ int num_grid_x = pred.w;
+ int num_grid_y = pred.h;
+
+ const int num_class = 80; // number of classes. 80 for COCO
+ const int reg_max_1 = (pred.c - num_class) / 4;
+
+ for (int i = 0; i < num_grid_y; i++)
+ {
+ for (int j = 0; j < num_grid_x; j++)
+ {
+ // find label with max score
+ int label = -1;
+ float score = -FLT_MAX;
+ for (int k = 0; k < num_class; k++)
+ {
+ float s = pred.channel(k).row(i)[j];
+ if (s > score)
+ {
+ label = k;
+ score = s;
+ }
+ }
+
+ score = sigmoid(score);
+
+ if (score >= prob_threshold)
+ {
+ ncnn::Mat bbox_pred(reg_max_1, 4);
+ for (int k = 0; k < reg_max_1 * 4; k++)
+ {
+ bbox_pred[k] = pred.channel(num_class + k).row(i)[j];
+ }
+ {
+ ncnn::Layer* softmax = ncnn::create_layer("Softmax");
+
+ ncnn::ParamDict pd;
+ pd.set(0, 1); // axis
+ pd.set(1, 1);
+ softmax->load_param(pd);
+
+ ncnn::Option opt;
+ opt.num_threads = 1;
+ opt.use_packing_layout = false;
+
+ softmax->create_pipeline(opt);
+
+ softmax->forward_inplace(bbox_pred, opt);
+
+ softmax->destroy_pipeline(opt);
+
+ delete softmax;
+ }
+
+ float pred_ltrb[4];
+ for (int k = 0; k < 4; k++)
+ {
+ float dis = 0.f;
+ const float* dis_after_sm = bbox_pred.row(k);
+ for (int l = 0; l < reg_max_1; l++)
+ {
+ dis += l * dis_after_sm[l];
+ }
+
+ pred_ltrb[k] = dis * stride;
+ }
+
+ float pb_cx = j * stride;
+ float pb_cy = i * stride;
+
+ float x0 = pb_cx - pred_ltrb[0];
+ float y0 = pb_cy - pred_ltrb[1];
+ float x1 = pb_cx + pred_ltrb[2];
+ float y1 = pb_cy + pred_ltrb[3];
+
+ Object obj;
+ obj.rect.x = x0;
+ obj.rect.y = y0;
+ obj.rect.width = x1 - x0;
+ obj.rect.height = y1 - y0;
+ obj.label = label;
+ obj.prob = score;
+
+ objects.push_back(obj);
+ }
+ }
+ }
+}
+
+static int detect_nanodet(const cv::Mat& bgr, std::vector<Object>& objects)
+{
+ ncnn::Net nanodet;
+
+ nanodet.opt.use_vulkan_compute = true;
+ // nanodet.opt.use_bf16_storage = true;
+
+ // original pretrained model from https://github.com/RangiLyu/nanodet
+ // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
+ // nanodet.load_param("nanodet-plus-m_320.torchscript.ncnn.param");
+ // nanodet.load_model("nanodet-plus-m_320.torchscript.ncnn.bin");
+ if (nanodet.load_param("nanodet-plus-m_416.torchscript.ncnn.param"))
+ exit(-1);
+ if (nanodet.load_model("nanodet-plus-m_416.torchscript.ncnn.bin"))
+ exit(-1);
+
+ int width = bgr.cols;
+ int height = bgr.rows;
+
+ // const int target_size = 320;
+ const int target_size = 416;
+ const float prob_threshold = 0.4f;
+ const float nms_threshold = 0.5f;
+
+ // pad to multiple of 32
+ int w = width;
+ int h = height;
+ float scale = 1.f;
+ if (w > h)
+ {
+ scale = (float)target_size / w;
+ w = target_size;
+ h = h * scale;
+ }
+ else
+ {
+ scale = (float)target_size / h;
+ h = target_size;
+ w = w * scale;
+ }
+
+ ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, width, height, w, h);
+
+ // pad to target_size rectangle
+ int wpad = (w + 31) / 32 * 32 - w;
+ int hpad = (h + 31) / 32 * 32 - h;
+ ncnn::Mat in_pad;
+ ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f);
+
+ const float mean_vals[3] = {103.53f, 116.28f, 123.675f};
+ const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f};
+ in_pad.substract_mean_normalize(mean_vals, norm_vals);
+
+ ncnn::Extractor ex = nanodet.create_extractor();
+
+ ex.input("in0", in_pad);
+
+ std::vector<Object> proposals;
+
+ // stride 8
+ {
+ ncnn::Mat pred;
+ ex.extract("231", pred);
+
+ std::vector<Object> objects8;
+ generate_proposals(pred, 8, in_pad, prob_threshold, objects8);
+
+ proposals.insert(proposals.end(), objects8.begin(), objects8.end());
+ }
+
+ // stride 16
+ {
+ ncnn::Mat pred;
+ ex.extract("228", pred);
+
+ std::vector<Object> objects16;
+ generate_proposals(pred, 16, in_pad, prob_threshold, objects16);
+
+ proposals.insert(proposals.end(), objects16.begin(), objects16.end());
+ }
+
+ // stride 32
+ {
+ ncnn::Mat pred;
+ ex.extract("225", pred);
+
+ std::vector<Object> objects32;
+ generate_proposals(pred, 32, in_pad, prob_threshold, objects32);
+
+ proposals.insert(proposals.end(), objects32.begin(), objects32.end());
+ }
+
+ // stride 64
+ {
+ ncnn::Mat pred;
+ ex.extract("222", pred);
+
+ std::vector<Object> objects64;
+ generate_proposals(pred, 64, in_pad, prob_threshold, objects64);
+
+ proposals.insert(proposals.end(), objects64.begin(), objects64.end());
+ }
+
+ // sort all proposals by score from highest to lowest
+ qsort_descent_inplace(proposals);
+
+ // apply nms with nms_threshold
+ std::vector<int> picked;
+ nms_sorted_bboxes(proposals, picked, nms_threshold);
+
+ int count = picked.size();
+
+ objects.resize(count);
+ for (int i = 0; i < count; i++)
+ {
+ objects[i] = proposals[picked[i]];
+
+ // adjust offset to original unpadded
+ float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
+ float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
+ float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
+ float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;
+
+ // clip
+ x0 = std::max(std::min(x0, (float)(width - 1)), 0.f);
+ y0 = std::max(std::min(y0, (float)(height - 1)), 0.f);
+ x1 = std::max(std::min(x1, (float)(width - 1)), 0.f);
+ y1 = std::max(std::min(y1, (float)(height - 1)), 0.f);
+
+ objects[i].rect.x = x0;
+ objects[i].rect.y = y0;
+ objects[i].rect.width = x1 - x0;
+ objects[i].rect.height = y1 - y0;
+ }
+
+ return 0;
+}
+
+static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
+{
+ static const char* class_names[] = {
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
+ "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
+ "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
+ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
+ "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
+ "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
+ "hair drier", "toothbrush"
+ };
+
+ cv::Mat image = bgr.clone();
+
+ for (size_t i = 0; i < objects.size(); i++)
+ {
+ const Object& obj = objects[i];
+
+ fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
+ obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
+
+ cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
+
+ char text[256];
+ sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
+
+ int x = obj.rect.x;
+ int y = obj.rect.y - label_size.height - baseLine;
+ if (y < 0)
+ y = 0;
+ if (x + label_size.width > image.cols)
+ x = image.cols - label_size.width;
+
+ cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
+ cv::Scalar(255, 255, 255), -1);
+
+ cv::putText(image, text, cv::Point(x, y + label_size.height),
+ cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
+ }
+
+ cv::imshow("image", image);
+ cv::waitKey(0);
+}
+
+int main(int argc, char** argv)
+{
+ if (argc != 2)
+ {
+ fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
+ return -1;
+ }
+
+ const char* imagepath = argv[1];
+
+ cv::Mat m = cv::imread(imagepath, 1);
+ if (m.empty())
+ {
+ fprintf(stderr, "cv::imread %s failed\n", imagepath);
+ return -1;
+ }
+
+ std::vector<Object> objects;
+ detect_nanodet(m, objects);
+
+ draw_objects(m, objects);
+
+ return 0;
+}