diff options
author | Wook Song <wook16.song@samsung.com> | 2024-01-02 15:44:47 +0900 |
---|---|---|
committer | Wook Song <wook16.song@samsung.com> | 2024-01-02 15:44:47 +0900 |
commit | d29facf659495142bf96fc34cf77092b119bf5a4 (patch) | |
tree | 73e1c386dd5d0430198fae51bf63fae81994103f /examples/yolov2.cpp | |
parent | 1df4c5bff4ef6ddfef49c080af49b764080f1fe4 (diff) | |
download | ncnn-d29facf659495142bf96fc34cf77092b119bf5a4.tar.gz ncnn-d29facf659495142bf96fc34cf77092b119bf5a4.tar.bz2 ncnn-d29facf659495142bf96fc34cf77092b119bf5a4.zip |
Imported Upstream version 20240102upstream/20240102upstream
Diffstat (limited to 'examples/yolov2.cpp')
-rw-r--r-- | examples/yolov2.cpp | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/examples/yolov2.cpp b/examples/yolov2.cpp new file mode 100644 index 0000000..111040f --- /dev/null +++ b/examples/yolov2.cpp @@ -0,0 +1,158 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "net.h" + +#if defined(USE_NCNN_SIMPLEOCV) +#include "simpleocv.h" +#else +#include <opencv2/core/core.hpp> +#include <opencv2/highgui/highgui.hpp> +#include <opencv2/imgproc/imgproc.hpp> +#endif +#include <stdio.h> +#include <vector> + +struct Object +{ + cv::Rect_<float> rect; + int label; + float prob; +}; + +static int detect_yolov2(const cv::Mat& bgr, std::vector<Object>& objects) +{ + ncnn::Net yolov2; + + yolov2.opt.use_vulkan_compute = true; + + // original pretrained model from https://github.com/eric612/MobileNet-YOLO + // https://github.com/eric612/MobileNet-YOLO/blob/master/models/yolov2/mobilenet_yolo_deploy.prototxt + // https://github.com/eric612/MobileNet-YOLO/blob/master/models/yolov2/mobilenet_yolo_deploy_iter_80000.caffemodel + // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models + if (yolov2.load_param("mobilenet_yolo.param")) + exit(-1); + if (yolov2.load_model("mobilenet_yolo.bin")) + exit(-1); + + const int target_size = 416; + + int img_w = bgr.cols; + int img_h = bgr.rows; + + ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size); + + // the Caffe-YOLOv2-Windows style + // X' = X * scale - mean + const float mean_vals[3] = {1.0f, 1.0f, 1.0f}; + const float norm_vals[3] = {0.007843f, 0.007843f, 0.007843f}; + in.substract_mean_normalize(0, norm_vals); + in.substract_mean_normalize(mean_vals, 0); + + ncnn::Extractor ex = yolov2.create_extractor(); + + ex.input("data", in); + + ncnn::Mat out; + ex.extract("detection_out", out); + + // printf("%d %d %d\n", out.w, out.h, out.c); + objects.clear(); + for (int i = 0; i < out.h; i++) + { + const float* values = out.row(i); + + Object object; + object.label = values[0]; + object.prob = values[1]; + object.rect.x = values[2] * img_w; + object.rect.y = values[3] * img_h; + object.rect.width = values[4] * img_w - object.rect.x; + object.rect.height = values[5] * img_h - object.rect.y; + + objects.push_back(object); + } + + return 0; +} + +static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) +{ + static const char* class_names[] = {"background", + "aeroplane", "bicycle", "bird", "boat", + "bottle", "bus", "car", "cat", "chair", + "cow", "diningtable", "dog", "horse", + "motorbike", "person", "pottedplant", + "sheep", "sofa", "train", "tvmonitor" + }; + + cv::Mat image = bgr.clone(); + + for (size_t i = 0; i < objects.size(); i++) + { + const Object& obj = objects[i]; + + fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, + obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); + + cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); + + char text[256]; + sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); + + int baseLine = 0; + cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); + + int x = obj.rect.x; + int y = obj.rect.y - label_size.height - baseLine; + if (y < 0) + y = 0; + if (x + label_size.width > image.cols) + x = image.cols - label_size.width; + + cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), + cv::Scalar(255, 255, 255), -1); + + cv::putText(image, text, cv::Point(x, y + label_size.height), + cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); + } + + cv::imshow("image", image); + cv::waitKey(0); +} + +int main(int argc, char** argv) +{ + if (argc != 2) + { + fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); + return -1; + } + + const char* imagepath = argv[1]; + + cv::Mat m = cv::imread(imagepath, 1); + if (m.empty()) + { + fprintf(stderr, "cv::imread %s failed\n", imagepath); + return -1; + } + + std::vector<Object> objects; + detect_yolov2(m, objects); + + draw_objects(m, objects); + + return 0; +} |