1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
The Netwide Disassembler, NDISASM
=================================
Introduction
============
The Netwide Disassembler is a small companion program to the Netwide
Assembler, NASM. It seemed a shame to have an x86 assembler,
complete with a full instruction table, and not make as much use of
it as possible, so here's a disassembler which shares the
instruction table (and some other bits of code) with NASM.
The Netwide Disassembler does nothing except to produce
disassemblies of _binary_ source files. NDISASM does not have any
understanding of object file formats, like `objdump', and it will
not understand DOS .EXE files like `debug' will. It just
disassembles.
Getting Started: Installation
=============================
See `nasm.doc' for installation instructions. NDISASM, like NASM,
has a man page which you may want to put somewhere useful, if you
are on a Unix system.
Running NDISASM
===============
To disassemble a file, you will typically use a command of the form
ndisasm [-b16 | -b32] filename
NDISASM can disassemble 16 bit code or 32 bit code equally easily,
provided of course that you remember to specify which it is to work
with. If no `-b' switch is present, NDISASM works in 16-bit mode by
default. The `-u' switch (for USE32) also invokes 32-bit mode.
Two more command line options are `-r' which reports the version
number of NDISASM you are running, and `-h' which gives a short
summary of command line options.
COM Files: Specifying an Origin
===============================
To disassemble a DOS .COM file correctly, a disassembler must assume
that the first instruction in the file is loaded at address 0x100,
rather than at zero. NDISASM, which assumes by default that any file
you give it is loaded at zero, will therefore need to be informed of
this.
The `-o' option allows you to declare a different origin for the
file you are disassembling. Its argument may be expressed in any of
the NASM numeric formats: decimal by default, if it begins with `$'
or `0x' or ends in `H' it's hex, if it ends in `Q' it's octal, and
if it ends in `B' it's binary.
Hence, to disassemble a .COM file:
ndisasm -o100h filename.com
will do the trick.
Code Following Data: Synchronisation
====================================
Suppose you are disassembling a file which contains some data which
isn't machine code, and _then_ contains some machine code. NDISASM
will faithfully plough through the data section, producing machine
instructions wherever it can (although most of them will look
bizarre, and some may have unusual prefixes, e.g. `fs or
ax,0x240a'), and generating `db' instructions every so often if it's
totally stumped. Then it will reach the code section.
Supposing NDISASM has just finished generating a strange machine
instruction from part of the data section, and its file position is
now one byte _before_ the beginning of the code section. It's
entirely possible that another spurious instruction will get
generated, starting with the final byte of the data section, and
then the correct first instruction in the code section will not be
seen because the starting point skipped over it. This isn't really
ideal.
To avoid this, you can specify a `synchronisation' point, or indeed
as many synchronisation points as you like (although NDISASM can
only handle 8192 sync points internally). The definition of a sync
point is this: NDISASM guarantees to hit sync points exactly during
disassembly. If it is thinking about generating an instruction which
would cause it to jump over a sync point, it will discard that
instruction and output a `db' instead. So it _will_ start
disassembly exactly from the sync point, and so you _will_ see all
the instructions in your code section.
Sync points are specified using the `-s' option: they are measured
in terms of the program origin, not the file position. So if you
want to synchronise after 32 bytes of a .COM file, you would have to
do
ndisasm -o100h -s120h file.com
rather than
ndisasm -o100h -s20h file.com
As stated above, you can specify multiple sync markers if you need
to, just by repeating the `-s' option.
Mixed Code and Data: Automatic (Intelligent) Synchronisation
============================================================
Suppose you are disassembling the boot sector of a DOS floppy (maybe
it has a virus, and you need to understand the virus so that you
know what kinds of damage it might have done you). Typically, this
will contain a JMP instruction, then some data, then the rest of the
code. So there is a very good chance of NDISASM being misaligned
when the data ends and the code begins. Hence a sync point is
needed.
On the other hand, why should you have to specify the sync point
manually? What you'd do in order to find where the sync point would
be, surely, would be to read the JMP instruction, and then to use
its target address as a sync point. So can NDISASM do that for you?
The answer, of course, is yes: using either of the synonymous
switches `-a' (for automatic sync) or `-i' (for intelligent sync)
will enable auto-sync mode. Auto-sync mode automatically generates a
sync point for any forward-referring PC-relative jump or call
instruction that NDISASM encounters. (Since NDISASM is one-pass, if
it encounters a PC-relative jump whose target has already been
processed, there isn't much it can do about it...)
Only PC-relative jumps are processed, since an absolute jump is
either through a register (in which case NDISASM doesn't know what
the register contains) or involves a segment address (in which case
the target code isn't in the same segment that NDISASM is working
in, and so the sync point can't be placed anywhere useful).
For some kinds of file, this mechanism will automatically put sync
points in all the right places, and save you from having to place
any sync points manually. However, it should be stressed that
auto-sync mode is _not_ guaranteed to catch all the sync points, and
you may still have to place some manually.
Auto-sync mode doesn't prevent you from declaring manual sync
points: it just adds automatically generated ones to the ones you
provide. It's perfectly feasible to specify `-i' _and_ some `-s'
options.
Another caveat with auto-sync mode is that if, by some unpleasant
fluke, something in your data section should disassemble to a
PC-relative call or jump instruction, NDISASM may obediently place a
sync point in a totally random place, for example in the middle of
one of the instructions in your code section. So you may end up with
a wrong disassembly even if you use auto-sync. Again, there isn't
much I can do about this. If you have problems, you'll have to use
manual sync points, or use the `-k' option (documented below) to
suppress disassembly of the data area.
Other Options
=============
The `-e' option skips a header on the file, by ignoring the first N
bytes. This means that the header is _not_ counted towards the
disassembly offset: if you give `-e10 -o10', disassembly will start
at byte 10 in the file, and this will be given offset 10, not 20.
The `-k' option is provided with two comma-separated numeric
arguments, the first of which is an assembly offset and the second
is a number of bytes to skip. This _will_ count the skipped bytes
towards the assembly offset: its use is to suppress disassembly of a
data section which wouldn't contain anything you wanted to see
anyway.
Bugs and Improvements
=====================
There are no known bugs. However, any you find, with patches if
possible, should be sent to <jules@dcs.warwick.ac.uk> or
<anakin@pobox.com>, and we'll try to fix them. Feel free to send
contributions and new features as well.
Future plans include awareness of which processors certain
instructions will run on, and marking of instructions that are too
advanced for some processor (or are FPU instructions, or are
undocumented opcodes, or are privileged protected-mode instructions,
or whatever).
That's All Folks!
=================
I hope NDISASM is of some use to somebody. Including me. :-)
I don't recommend taking NDISASM apart to see how an efficient
disassembler works, because as far as I know, it isn't an efficient
one anyway. You have been warned.
Please feel free to send comments, suggestions, or chat to
<anakin@pobox.com>. As with NASM, no flames please.
- Simon Tatham <anakin@pobox.com>, 21-Nov-96
|