1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
|
\A{iref} x86 Instruction Reference
This appendix provides a complete list of the machine instructions
which NASM will assemble, and a short description of the function of
each one.
It is not intended to be an exhaustive documentation on the fine
details of the instructions' function, such as which exceptions they
can trigger: for such documentation, you should go to Intel's Web
site, \W{http://developer.intel.com/design/Pentium4/manuals/}\c{http://developer.intel.com/design/Pentium4/manuals/}.
Instead, this appendix is intended primarily to provide
documentation on the way the instructions may be used within NASM.
For example, looking up \c{LOOP} will tell you that NASM allows
\c{CX} or \c{ECX} to be specified as an optional second argument to
the \c{LOOP} instruction, to enforce which of the two possible
counter registers should be used if the default is not the one
desired.
The instructions are not quite listed in alphabetical order, since
groups of instructions with similar functions are lumped together in
the same entry. Most of them don't move very far from their
alphabetic position because of this.
\H{iref-opr} Key to Operand Specifications
The instruction descriptions in this appendix specify their operands
using the following notation:
\b Registers: \c{reg8} denotes an 8-bit \i{general purpose
register}, \c{reg16} denotes a 16-bit general purpose register,
\c{reg32} a 32-bit one and \c{reg64} a 64-bit one. \c{fpureg} denotes
one of the eight FPU stack registers, \c{mmxreg} denotes one of the
eight 64-bit MMX registers, and \c{segreg} denotes a segment register.
\c{xmmreg} denotes one of the 8, or 16 in x64 long mode, SSE XMM registers.
In addition, some registers (such as \c{AL}, \c{DX}, \c{ECX} or \c{RAX})
may be specified explicitly.
\b Immediate operands: \c{imm} denotes a generic \i{immediate operand}.
\c{imm8}, \c{imm16} and \c{imm32} are used when the operand is
intended to be a specific size. For some of these instructions, NASM
needs an explicit specifier: for example, \c{ADD ESP,16} could be
interpreted as either \c{ADD r/m32,imm32} or \c{ADD r/m32,imm8}.
NASM chooses the former by default, and so you must specify \c{ADD
ESP,BYTE 16} for the latter. There is a special case of the allowance
of an \c{imm64} for particular x64 versions of the MOV instruction.
\b Memory references: \c{mem} denotes a generic \i{memory reference};
\c{mem8}, \c{mem16}, \c{mem32}, \c{mem64} and \c{mem80} are used
when the operand needs to be a specific size. Again, a specifier is
needed in some cases: \c{DEC [address]} is ambiguous and will be
rejected by NASM. You must specify \c{DEC BYTE [address]}, \c{DEC
WORD [address]} or \c{DEC DWORD [address]} instead.
\b \i{Restricted memory references}: one form of the \c{MOV}
instruction allows a memory address to be specified \e{without}
allowing the normal range of register combinations and effective
address processing. This is denoted by \c{memoffs8}, \c{memoffs16},
\c{memoffs32} or \c{memoffs64}.
\b Register or memory choices: many instructions can accept either a
register \e{or} a memory reference as an operand. \c{r/m8} is
shorthand for \c{reg8/mem8}; similarly \c{r/m16} and \c{r/m32}.
On legacy x86 modes, \c{r/m64} is MMX-related, and is shorthand for
\c{mmxreg/mem64}. When utilizing the x86-64 architecture extension,
\c{r/m64} denotes use of a 64-bit GPR as well, and is shorthand for
\c{reg64/mem64}.
\H{iref-opc} Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for
each form of each instruction. The opcodes are listed in the
following way:
\b A hex number, such as \c{3F}, indicates a fixed byte containing
that number.
\b A hex number followed by \c{+r}, such as \c{C8+r}, indicates that
one of the operands to the instruction is a register, and the
`register value' of that register should be added to the hex number
to produce the generated byte. For example, EDX has register value
2, so the code \c{C8+r}, when the register operand is EDX, generates
the hex byte \c{CA}. Register values for specific registers are
given in \k{iref-rv}.
\b A hex number followed by \c{+cc}, such as \c{40+cc}, indicates
that the instruction name has a condition code suffix, and the
numeric representation of the condition code should be added to the
hex number to produce the generated byte. For example, the code
\c{40+cc}, when the instruction contains the \c{NE} condition,
generates the hex byte \c{45}. Condition codes and their numeric
representations are given in \k{iref-cc}.
\b A slash followed by a digit, such as \c{/2}, indicates that one
of the operands to the instruction is a memory address or register
(denoted \c{mem} or \c{r/m}, with an optional size). This is to be
encoded as an effective address, with a \i{ModR/M byte}, an optional
\i{SIB byte}, and an optional displacement, and the spare (register)
field of the ModR/M byte should be the digit given (which will be
from 0 to 7, so it fits in three bits). The encoding of effective
addresses is given in \k{iref-ea}.
\b The code \c{/r} combines the above two: it indicates that one of
the operands is a memory address or \c{r/m}, and another is a
register, and that an effective address should be generated with the
spare (register) field in the ModR/M byte being equal to the
`register value' of the register operand. The encoding of effective
addresses is given in \k{iref-ea}; register values are given in
\k{iref-rv}.
\b The codes \c{ib}, \c{iw} and \c{id} indicate that one of the
operands to the instruction is an immediate value, and that this is
to be encoded as a byte, little-endian word or little-endian
doubleword respectively.
\b The codes \c{rb}, \c{rw} and \c{rd} indicate that one of the
operands to the instruction is an immediate value, and that the
\e{difference} between this value and the address of the end of the
instruction is to be encoded as a byte, word or doubleword
respectively. Where the form \c{rw/rd} appears, it indicates that
either \c{rw} or \c{rd} should be used according to whether assembly
is being performed in \c{BITS 16} or \c{BITS 32} state respectively.
\b The codes \c{ow} and \c{od} indicate that one of the operands to
the instruction is a reference to the contents of a memory address
specified as an immediate value: this encoding is used in some forms
of the \c{MOV} instruction in place of the standard
effective-address mechanism. The displacement is encoded as a word
or doubleword. Again, \c{ow/od} denotes that \c{ow} or \c{od} should
be chosen according to the \c{BITS} setting.
\b The codes \c{o16} and \c{o32} indicate that the given form of the
instruction should be assembled with operand size 16 or 32 bits. In
other words, \c{o16} indicates a \c{66} prefix in \c{BITS 32} state,
but generates no code in \c{BITS 16} state; and \c{o32} indicates a
\c{66} prefix in \c{BITS 16} state but generates nothing in \c{BITS
32}.
\b The codes \c{a16} and \c{a32}, similarly to \c{o16} and \c{o32},
indicate the address size of the given form of the instruction.
Where this does not match the \c{BITS} setting, a \c{67} prefix is
required. Please note that \c{a16} is useless in long mode as
16-bit addressing is depreciated on the x86-64 architecture extension.
\S{iref-rv} Register Values
Where an instruction requires a register value, it is already
implicit in the encoding of the rest of the instruction what type of
register is intended: an 8-bit general-purpose register, a segment
register, a debug register, an MMX register, or whatever. Therefore
there is no problem with registers of different types sharing an
encoding value.
Please note that for the register classes listed below, the register
extensions (REX) classes require the use of the REX prefix, in which
is only available when in long mode on the x86-64 processor. This
pretty much goes for any register that has a number higher than 7.
The encodings for the various classes of register are:
\b 8-bit general registers: \c{AL} is 0, \c{CL} is 1, \c{DL} is 2,
\c{BL} is 3, \c{AH} is 4, \c{CH} is 5, \c{DH} is 6 and \c{BH} is
7. Please note that \c{AH}, \c{BH}, \c{CH} and \c{DH} are not
addressable when using the REX prefix in long mode.
\b 8-bit general register extensions (REX): \c{SPL} is 4, \c{BPL} is 5,
\c{SIL} is 6, \c{DIL} is 7, \c{R8B} is 8, \c{R9B} is 9, \c{R10B} is 10,
\c{R11B} is 11, \c{R12B} is 12, \c{R13B} is 13, \c{R14B} is 14 and
\c{R15B} is 15.
\b 16-bit general registers: \c{AX} is 0, \c{CX} is 1, \c{DX} is 2,
\c{BX} is 3, \c{SP} is 4, \c{BP} is 5, \c{SI} is 6, and \c{DI} is 7.
\b 16-bit general register extensions (REX): \c{R8W} is 8, \c{R9W} is 9,
\c{R10w} is 10, \c{R11W} is 11, \c{R12W} is 12, \c{R13W} is 13, \c{R14W}
is 14 and \c{R15W} is 15.
\b 32-bit general registers: \c{EAX} is 0, \c{ECX} is 1, \c{EDX} is
2, \c{EBX} is 3, \c{ESP} is 4, \c{EBP} is 5, \c{ESI} is 6, and
\c{EDI} is 7.
\b 32-bit general register extensions (REX): \c{R8D} is 8, \c{R9D} is 9,
\c{R10D} is 10, \c{R11D} is 11, \c{R12D} is 12, \c{R13D} is 13, \c{R14D}
is 14 and \c{R15D} is 15.
\b 64-bit general register extensions (REX): \c{RAX} is 0, \c{RCX} is 1,
\c{RDX} is 2, \c{RBX} is 3, \c{RSP} is 4, \c{RBP} is 5, \c{RSI} is 6,
\c{RDI} is 7, \c{R8} is 8, \c{R9} is 9, \c{R10} is 10, \c{R11} is 11,
\c{R12} is 12, \c{R13} is 13, \c{R14} is 14 and \c{R15} is 15.
\b \i{Segment registers}: \c{ES} is 0, \c{CS} is 1, \c{SS} is 2, \c{DS}
is 3, \c{FS} is 4, and \c{GS} is 5.
\b \I{floating-point, registers}Floating-point registers: \c{ST0}
is 0, \c{ST1} is 1, \c{ST2} is 2, \c{ST3} is 3, \c{ST4} is 4,
\c{ST5} is 5, \c{ST6} is 6, and \c{ST7} is 7.
\b 64-bit \i{MMX registers}: \c{MM0} is 0, \c{MM1} is 1, \c{MM2} is 2,
\c{MM3} is 3, \c{MM4} is 4, \c{MM5} is 5, \c{MM6} is 6, and \c{MM7}
is 7.
\b 128-bit \i{XMM (SSE) registers}: \c{XMM0} is 0, \c{XMM1} is 1,
\c{XMM2} is 2, \c{XMM3} is 3, \c{XMM4} is 4, \c{XMM5} is 5, \c{XMM6} is
6 and \c{XMM7} is 7.
\b 128-bit \i{XMM (SSE) register} extensions (REX): \c{XMM8} is 8,
\c{XMM9} is 9, \c{XMM10} is 10, \c{XMM11} is 11, \c{XMM12} is 12,
\c{XMM13} is 13, \c{XMM14} is 14 and \c{XMM15} is 15.
\b \i{Control registers}: \c{CR0} is 0, \c{CR2} is 2, \c{CR3} is 3,
and \c{CR4} is 4.
\b \i{Control register} extensions: \c{CR8} is 8.
\b \i{Debug registers}: \c{DR0} is 0, \c{DR1} is 1, \c{DR2} is 2,
\c{DR3} is 3, \c{DR6} is 6, and \c{DR7} is 7.
\b \i{Test registers}: \c{TR3} is 3, \c{TR4} is 4, \c{TR5} is 5,
\c{TR6} is 6, and \c{TR7} is 7.
(Note that wherever a register name contains a number, that number
is also the register value for that register.)
\S{iref-cc} \i{Condition Codes}
The available condition codes are given here, along with their
numeric representations as part of opcodes. Many of these condition
codes have synonyms, so several will be listed at a time.
In the following descriptions, the word `either', when applied to two
possible trigger conditions, is used to mean `either or both'. If
`either but not both' is meant, the phrase `exactly one of' is used.
\b \c{O} is 0 (trigger if the overflow flag is set); \c{NO} is 1.
\b \c{B}, \c{C} and \c{NAE} are 2 (trigger if the carry flag is
set); \c{AE}, \c{NB} and \c{NC} are 3.
\b \c{E} and \c{Z} are 4 (trigger if the zero flag is set); \c{NE}
and \c{NZ} are 5.
\b \c{BE} and \c{NA} are 6 (trigger if either of the carry or zero
flags is set); \c{A} and \c{NBE} are 7.
\b \c{S} is 8 (trigger if the sign flag is set); \c{NS} is 9.
\b \c{P} and \c{PE} are 10 (trigger if the parity flag is set);
\c{NP} and \c{PO} are 11.
\b \c{L} and \c{NGE} are 12 (trigger if exactly one of the sign and
overflow flags is set); \c{GE} and \c{NL} are 13.
\b \c{LE} and \c{NG} are 14 (trigger if either the zero flag is set,
or exactly one of the sign and overflow flags is set); \c{G} and
\c{NLE} are 15.
Note that in all cases, the sense of a condition code may be
reversed by changing the low bit of the numeric representation.
For details of when an instruction sets each of the status flags,
see the individual instruction, plus the Status Flags reference
in \k{iref-Flags}
\S{iref-SSE-cc} \i{SSE Condition Predicates}
The condition predicates for SSE comparison instructions are the
codes used as part of the opcode, to determine what form of
comparison is being carried out. In each case, the imm8 value is
the final byte of the opcode encoding, and the predicate is the
code used as part of the mnemonic for the instruction (equivalent
to the "cc" in an integer instruction that used a condition code).
The instructions that use this will give details of what the various
mnemonics are, this table is used to help you work out details of what
is happening.
\c Predi- imm8 Description Relation where: Emula- Result QNaN
\c cate Encod- A Is 1st Operand tion if NaN Signal
\c ing B Is 2nd Operand Operand Invalid
\c
\c EQ 000B equal A = B False No
\c
\c LT 001B less-than A < B False Yes
\c
\c LE 010B less-than- A <= B False Yes
\c or-equal
\c
\c --- ---- greater A > B Swap False Yes
\c than Operands,
\c Use LT
\c
\c --- ---- greater- A >= B Swap False Yes
\c than-or-equal Operands,
\c Use LE
\c
\c UNORD 011B unordered A, B = Unordered True No
\c
\c NEQ 100B not-equal A != B True No
\c
\c NLT 101B not-less- NOT(A < B) True Yes
\c than
\c
\c NLE 110B not-less- NOT(A <= B) True Yes
\c than-or-
\c equal
\c
\c --- ---- not-greater NOT(A > B) Swap True Yes
\c than Operands,
\c Use NLT
\c
\c --- ---- not-greater NOT(A >= B) Swap True Yes
\c than- Operands,
\c or-equal Use NLE
\c
\c ORD 111B ordered A , B = Ordered False No
The unordered relationship is true when at least one of the two
values being compared is a NaN or in an unsupported format.
Note that the comparisons which are listed as not having a predicate
or encoding can only be achieved through software emulation, as
described in the "emulation" column. Note in particular that an
instruction such as \c{greater-than} is not the same as \c{NLE}, as,
unlike with the \c{CMP} instruction, it has to take into account the
possibility of one operand containing a NaN or an unsupported numeric
format.
\S{iref-Flags} \i{Status Flags}
The status flags provide some information about the result of the
arithmetic instructions. This information can be used by conditional
instructions (such a \c{Jcc} and \c{CMOVcc}) as well as by some of
the other instructions (such as \c{ADC} and \c{INTO}).
There are 6 status flags:
\c CF - Carry flag.
Set if an arithmetic operation generates a
carry or a borrow out of the most-significant bit of the result;
cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision
arithmetic.
\c PF - Parity flag.
Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.
\c AF - Adjust flag.
Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used
in binary-coded decimal (BCD) arithmetic.
\c ZF - Zero flag.
Set if the result is zero; cleared otherwise.
\c SF - Sign flag.
Set equal to the most-significant bit of the result, which is the
sign bit of a signed integer. (0 indicates a positive value and 1
indicates a negative value.)
\c OF - Overflow flag.
Set if the integer result is too large a positive number or too
small a negative number (excluding the sign-bit) to fit in the
destination operand; cleared otherwise. This flag indicates an
overflow condition for signed-integer (two's complement) arithmetic.
\S{iref-ea} Effective Address Encoding: \i{ModR/M} and \i{SIB}
An \i{effective address} is encoded in up to three parts: a ModR/M
byte, an optional SIB byte, and an optional byte, word or doubleword
displacement field.
The ModR/M byte consists of three fields: the \c{mod} field, ranging
from 0 to 3, in the upper two bits of the byte, the \c{r/m} field,
ranging from 0 to 7, in the lower three bits, and the spare
(register) field in the middle (bit 3 to bit 5). The spare field is
not relevant to the effective address being encoded, and either
contains an extension to the instruction opcode or the register
value of another operand.
The ModR/M system can be used to encode a direct register reference
rather than a memory access. This is always done by setting the
\c{mod} field to 3 and the \c{r/m} field to the register value of
the register in question (it must be a general-purpose register, and
the size of the register must already be implicit in the encoding of
the rest of the instruction). In this case, the SIB byte and
displacement field are both absent.
In 16-bit addressing mode (either \c{BITS 16} with no \c{67} prefix,
or \c{BITS 32} with a \c{67} prefix), the SIB byte is never used.
The general rules for \c{mod} and \c{r/m} (there is an exception,
given below) are:
\b The \c{mod} field gives the length of the displacement field: 0
means no displacement, 1 means one byte, and 2 means two bytes.
\b The \c{r/m} field encodes the combination of registers to be
added to the displacement to give the accessed address: 0 means
\c{BX+SI}, 1 means \c{BX+DI}, 2 means \c{BP+SI}, 3 means \c{BP+DI},
4 means \c{SI} only, 5 means \c{DI} only, 6 means \c{BP} only, and 7
means \c{BX} only.
However, there is a special case:
\b If \c{mod} is 0 and \c{r/m} is 6, the effective address encoded
is not \c{[BP]} as the above rules would suggest, but instead
\c{[disp16]}: the displacement field is present and is two bytes
long, and no registers are added to the displacement.
Therefore the effective address \c{[BP]} cannot be encoded as
efficiently as \c{[BX]}; so if you code \c{[BP]} in a program, NASM
adds a notional 8-bit zero displacement, and sets \c{mod} to 1,
\c{r/m} to 6, and the one-byte displacement field to 0.
In 32-bit addressing mode (either \c{BITS 16} with a \c{67} prefix,
or \c{BITS 32} with no \c{67} prefix) the general rules (again,
there are exceptions) for \c{mod} and \c{r/m} are:
\b The \c{mod} field gives the length of the displacement field: 0
means no displacement, 1 means one byte, and 2 means four bytes.
\b If only one register is to be added to the displacement, and it
is not \c{ESP}, the \c{r/m} field gives its register value, and the
SIB byte is absent. If the \c{r/m} field is 4 (which would encode
\c{ESP}), the SIB byte is present and gives the combination and
scaling of registers to be added to the displacement.
If the SIB byte is present, it describes the combination of
registers (an optional base register, and an optional index register
scaled by multiplication by 1, 2, 4 or 8) to be added to the
displacement. The SIB byte is divided into the \c{scale} field, in
the top two bits, the \c{index} field in the next three, and the
\c{base} field in the bottom three. The general rules are:
\b The \c{base} field encodes the register value of the base
register.
\b The \c{index} field encodes the register value of the index
register, unless it is 4, in which case no index register is used
(so \c{ESP} cannot be used as an index register).
\b The \c{scale} field encodes the multiplier by which the index
register is scaled before adding it to the base and displacement: 0
encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3 encodes 8.
The exceptions to the 32-bit encoding rules are:
\b If \c{mod} is 0 and \c{r/m} is 5, the effective address encoded
is not \c{[EBP]} as the above rules would suggest, but instead
\c{[disp32]}: the displacement field is present and is four bytes
long, and no registers are added to the displacement.
\b If \c{mod} is 0, \c{r/m} is 4 (meaning the SIB byte is present)
and \c{base} is 5, the effective address encoded is not
\c{[EBP+index]} as the above rules would suggest, but instead
\c{[disp32+index]}: the displacement field is present and is four
bytes long, and there is no base register (but the index register is
still processed in the normal way).
\S{iref-rex} Register Extensions: The \i{REX} Prefix
The Register Extensions, or \i{REX} for short, prefix is the means
of accessing extended registers on the x86-64 architecture. \i{REX}
is considered an instruction prefix, but is required to be after
all other prefixes and thus immediately before the first instruction
opcode itself. So overall, \i{REX} can be thought of as an "Opcode
Prefix" instead. The \i{REX} prefix itself is indicated by a value
of 0x4X, where X is one of 16 different combinations of the actual
\i{REX} flags.
The \i{REX} prefix flags consist of four 1-bit extensions fields.
These flags are found in the lower nibble of the actual \i{REX}
prefix opcode. Below is the list of \i{REX} prefix flags, from
high bit to low bit.
\c{REX.W}: When set, this flag indicates the use of a 64-bit operand,
as opposed to the default of using 32-bit operands as found in 32-bit
Protected Mode.
\c{REX.R}: When set, this flag extends the \c{reg (spare)} field of
the \c{ModRM} byte. Overall, this raises the amount of addressable
registers in this field from 8 to 16.
\c{REX.X}: When set, this flag extends the \c{index} field of the
\c{SIB} byte. Overall, this raises the amount of addressable
registers in this field from 8 to 16.
\c{REX.B}: When set, this flag extends the \c{r/m} field of the
\c{ModRM} byte. This flag can also represent an extension to the
opcode register \c{(/r)} field. The determination of which is used
varies depending on which instruction is used. Overall, this raises
the amount of addressable registers in these fields from 8 to 16.
Interal use of the \i{REX} prefix by the processor is consistent,
yet non-trivial. Most instructions use the \i{REX} prefix as
indicated by the above flags. Some instructions require the \i{REX}
prefix to be present even if the flags are empty. Some instructions
default to a 64-bit operand and require the \i{REX} prefix only for
actual register extensions, and thus ignores the \c{REX.W} field
completely.
At any rate, NASM is designed to handle, and fully supports, the
\i{REX} prefix internally. Please read the appropriate processor
documentation for further information on the \i{REX} prefix.
You may have noticed that opcodes 0x40 through 0x4F are actually
opcodes for the INC/DEC instructions for each General Purpose
Register. This is, of course, correct... for legacy x86. While
in long mode, opcodes 0x40 through 0x4F are reserved for use as
the REX prefix. The other opcode forms of the INC/DEC instructions
are used instead.
\H{iref-flg} Key to Instruction Flags
Given along with each instruction in this appendix is a set of
flags, denoting the type of the instruction. The types are as follows:
\b \c{8086}, \c{186}, \c{286}, \c{386}, \c{486}, \c{PENT} and \c{P6}
denote the lowest processor type that supports the instruction. Most
instructions run on all processors above the given type; those that
do not are documented. The Pentium II contains no additional
instructions beyond the P6 (Pentium Pro); from the point of view of
its instruction set, it can be thought of as a P6 with MMX
capability.
\b \c{3DNOW} indicates that the instruction is a 3DNow! one, and will
run on the AMD K6-2 and later processors. ATHLON extensions to the
3DNow! instruction set are documented as such.
\b \c{CYRIX} indicates that the instruction is specific to Cyrix
processors, for example the extra MMX instructions in the Cyrix
extended MMX instruction set.
\b \c{FPU} indicates that the instruction is a floating-point one,
and will only run on machines with a coprocessor (automatically
including 486DX, Pentium and above).
\b \c{KATMAI} indicates that the instruction was introduced as part
of the Katmai New Instruction set. These instructions are available
on the Pentium III and later processors. Those which are not
specifically SSE instructions are also available on the AMD Athlon.
\b \c{MMX} indicates that the instruction is an MMX one, and will
run on MMX-capable Pentium processors and the Pentium II.
\b \c{PRIV} indicates that the instruction is a protected-mode
management instruction. Many of these may only be used in protected
mode, or only at privilege level zero.
\b \c{SSE} and \c{SSE2} indicate that the instruction is a Streaming
SIMD Extension instruction. These instructions operate on multiple
values in a single operation. SSE was introduced with the Pentium III
and SSE2 was introduced with the Pentium 4.
\b \c{UNDOC} indicates that the instruction is an undocumented one,
and not part of the official Intel Architecture; it may or may not
be supported on any given machine.
\b \c{WILLAMETTE} indicates that the instruction was introduced as
part of the new instruction set in the Pentium 4 and Intel Xeon
processors. These instructions are also known as SSE2 instructions.
\b \c{X64} indicates that the instruction was introduced as part of
the new instruction set in the x86-64 architecture extension,
commonly referred to as x64, AMD64 or EM64T.
\H{iref-inst} x86 Instruction Set
\S{insAAA} \i\c{AAA}, \i\c{AAS}, \i\c{AAM}, \i\c{AAD}: ASCII
Adjustments
\c AAA ; 37 [8086]
\c AAS ; 3F [8086]
\c AAD ; D5 0A [8086]
\c AAD imm ; D5 ib [8086]
\c AAM ; D4 0A [8086]
\c AAM imm ; D4 ib [8086]
These instructions are used in conjunction with the add, subtract,
multiply and divide instructions to perform binary-coded decimal
arithmetic in \e{unpacked} (one BCD digit per byte - easy to
translate to and from \c{ASCII}, hence the instruction names) form.
There are also packed BCD instructions \c{DAA} and \c{DAS}: see
\k{insDAA}.
\b \c{AAA} (ASCII Adjust After Addition) should be used after a
one-byte \c{ADD} instruction whose destination was the \c{AL}
register: by means of examining the value in the low nibble of
\c{AL} and also the auxiliary carry flag \c{AF}, it determines
whether the addition has overflowed, and adjusts it (and sets
the carry flag) if so. You can add long BCD strings together
by doing \c{ADD}/\c{AAA} on the low digits, then doing
\c{ADC}/\c{AAA} on each subsequent digit.
\b \c{AAS} (ASCII Adjust AL After Subtraction) works similarly to
\c{AAA}, but is for use after \c{SUB} instructions rather than
\c{ADD}.
\b \c{AAM} (ASCII Adjust AX After Multiply) is for use after you
have multiplied two decimal digits together and left the result
in \c{AL}: it divides \c{AL} by ten and stores the quotient in
\c{AH}, leaving the remainder in \c{AL}. The divisor 10 can be
changed by specifying an operand to the instruction: a particularly
handy use of this is \c{AAM 16}, causing the two nibbles in \c{AL}
to be separated into \c{AH} and \c{AL}.
\b \c{AAD} (ASCII Adjust AX Before Division) performs the inverse
operation to \c{AAM}: it multiplies \c{AH} by ten, adds it to
\c{AL}, and sets \c{AH} to zero. Again, the multiplier 10 can
be changed.
\S{insADC} \i\c{ADC}: Add with Carry
\c ADC r/m8,reg8 ; 10 /r [8086]
\c ADC r/m16,reg16 ; o16 11 /r [8086]
\c ADC r/m32,reg32 ; o32 11 /r [386]
\c ADC reg8,r/m8 ; 12 /r [8086]
\c ADC reg16,r/m16 ; o16 13 /r [8086]
\c ADC reg32,r/m32 ; o32 13 /r [386]
\c ADC r/m8,imm8 ; 80 /2 ib [8086]
\c ADC r/m16,imm16 ; o16 81 /2 iw [8086]
\c ADC r/m32,imm32 ; o32 81 /2 id [386]
\c ADC r/m16,imm8 ; o16 83 /2 ib [8086]
\c ADC r/m32,imm8 ; o32 83 /2 ib [386]
\c ADC AL,imm8 ; 14 ib [8086]
\c ADC AX,imm16 ; o16 15 iw [8086]
\c ADC EAX,imm32 ; o32 15 id [386]
\c{ADC} performs integer addition: it adds its two operands
together, plus the value of the carry flag, and leaves the result in
its destination (first) operand. The destination operand can be a
register or a memory location. The source operand can be a register,
a memory location or an immediate value.
The flags are set according to the result of the operation: in
particular, the carry flag is affected and can be used by a
subsequent \c{ADC} instruction.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
To add two numbers without also adding the contents of the carry
flag, use \c{ADD} (\k{insADD}).
\S{insADD} \i\c{ADD}: Add Integers
\c ADD r/m8,reg8 ; 00 /r [8086]
\c ADD r/m16,reg16 ; o16 01 /r [8086]
\c ADD r/m32,reg32 ; o32 01 /r [386]
\c ADD reg8,r/m8 ; 02 /r [8086]
\c ADD reg16,r/m16 ; o16 03 /r [8086]
\c ADD reg32,r/m32 ; o32 03 /r [386]
\c ADD r/m8,imm8 ; 80 /7 ib [8086]
\c ADD r/m16,imm16 ; o16 81 /7 iw [8086]
\c ADD r/m32,imm32 ; o32 81 /7 id [386]
\c ADD r/m16,imm8 ; o16 83 /7 ib [8086]
\c ADD r/m32,imm8 ; o32 83 /7 ib [386]
\c ADD AL,imm8 ; 04 ib [8086]
\c ADD AX,imm16 ; o16 05 iw [8086]
\c ADD EAX,imm32 ; o32 05 id [386]
\c{ADD} performs integer addition: it adds its two operands
together, and leaves the result in its destination (first) operand.
The destination operand can be a register or a memory location.
The source operand can be a register, a memory location or an
immediate value.
The flags are set according to the result of the operation: in
particular, the carry flag is affected and can be used by a
subsequent \c{ADC} instruction.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
\S{insADDPD} \i\c{ADDPD}: ADD Packed Double-Precision FP Values
\c ADDPD xmm1,xmm2/mem128 ; 66 0F 58 /r [WILLAMETTE,SSE2]
\c{ADDPD} performs addition on each of two packed double-precision
FP value pairs.
\c dst[0-63] := dst[0-63] + src[0-63],
\c dst[64-127] := dst[64-127] + src[64-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insADDPS} \i\c{ADDPS}: ADD Packed Single-Precision FP Values
\c ADDPS xmm1,xmm2/mem128 ; 0F 58 /r [KATMAI,SSE]
\c{ADDPS} performs addition on each of four packed single-precision
FP value pairs
\c dst[0-31] := dst[0-31] + src[0-31],
\c dst[32-63] := dst[32-63] + src[32-63],
\c dst[64-95] := dst[64-95] + src[64-95],
\c dst[96-127] := dst[96-127] + src[96-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insADDSD} \i\c{ADDSD}: ADD Scalar Double-Precision FP Values
\c ADDSD xmm1,xmm2/mem64 ; F2 0F 58 /r [KATMAI,SSE]
\c{ADDSD} adds the low double-precision FP values from the source
and destination operands and stores the double-precision FP result
in the destination operand.
\c dst[0-63] := dst[0-63] + src[0-63],
\c dst[64-127) remains unchanged.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 64-bit memory location.
\S{insADDSS} \i\c{ADDSS}: ADD Scalar Single-Precision FP Values
\c ADDSS xmm1,xmm2/mem32 ; F3 0F 58 /r [WILLAMETTE,SSE2]
\c{ADDSS} adds the low single-precision FP values from the source
and destination operands and stores the single-precision FP result
in the destination operand.
\c dst[0-31] := dst[0-31] + src[0-31],
\c dst[32-127] remains unchanged.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 32-bit memory location.
\S{insAND} \i\c{AND}: Bitwise AND
\c AND r/m8,reg8 ; 20 /r [8086]
\c AND r/m16,reg16 ; o16 21 /r [8086]
\c AND r/m32,reg32 ; o32 21 /r [386]
\c AND reg8,r/m8 ; 22 /r [8086]
\c AND reg16,r/m16 ; o16 23 /r [8086]
\c AND reg32,r/m32 ; o32 23 /r [386]
\c AND r/m8,imm8 ; 80 /4 ib [8086]
\c AND r/m16,imm16 ; o16 81 /4 iw [8086]
\c AND r/m32,imm32 ; o32 81 /4 id [386]
\c AND r/m16,imm8 ; o16 83 /4 ib [8086]
\c AND r/m32,imm8 ; o32 83 /4 ib [386]
\c AND AL,imm8 ; 24 ib [8086]
\c AND AX,imm16 ; o16 25 iw [8086]
\c AND EAX,imm32 ; o32 25 id [386]
\c{AND} performs a bitwise AND operation between its two operands
(i.e. each bit of the result is 1 if and only if the corresponding
bits of the two inputs were both 1), and stores the result in the
destination (first) operand. The destination operand can be a
register or a memory location. The source operand can be a register,
a memory location or an immediate value.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
The \c{MMX} instruction \c{PAND} (see \k{insPAND}) performs the same
operation on the 64-bit \c{MMX} registers.
\S{insANDNPD} \i\c{ANDNPD}: Bitwise Logical AND NOT of
Packed Double-Precision FP Values
\c ANDNPD xmm1,xmm2/mem128 ; 66 0F 55 /r [WILLAMETTE,SSE2]
\c{ANDNPD} inverts the bits of the two double-precision
floating-point values in the destination register, and then
performs a logical AND between the two double-precision
floating-point values in the source operand and the temporary
inverted result, storing the result in the destination register.
\c dst[0-63] := src[0-63] AND NOT dst[0-63],
\c dst[64-127] := src[64-127] AND NOT dst[64-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insANDNPS} \i\c{ANDNPS}: Bitwise Logical AND NOT of
Packed Single-Precision FP Values
\c ANDNPS xmm1,xmm2/mem128 ; 0F 55 /r [KATMAI,SSE]
\c{ANDNPS} inverts the bits of the four single-precision
floating-point values in the destination register, and then
performs a logical AND between the four single-precision
floating-point values in the source operand and the temporary
inverted result, storing the result in the destination register.
\c dst[0-31] := src[0-31] AND NOT dst[0-31],
\c dst[32-63] := src[32-63] AND NOT dst[32-63],
\c dst[64-95] := src[64-95] AND NOT dst[64-95],
\c dst[96-127] := src[96-127] AND NOT dst[96-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insANDPD} \i\c{ANDPD}: Bitwise Logical AND For Single FP
\c ANDPD xmm1,xmm2/mem128 ; 66 0F 54 /r [WILLAMETTE,SSE2]
\c{ANDPD} performs a bitwise logical AND of the two double-precision
floating point values in the source and destination operand, and
stores the result in the destination register.
\c dst[0-63] := src[0-63] AND dst[0-63],
\c dst[64-127] := src[64-127] AND dst[64-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insANDPS} \i\c{ANDPS}: Bitwise Logical AND For Single FP
\c ANDPS xmm1,xmm2/mem128 ; 0F 54 /r [KATMAI,SSE]
\c{ANDPS} performs a bitwise logical AND of the four single-precision
floating point values in the source and destination operand, and
stores the result in the destination register.
\c dst[0-31] := src[0-31] AND dst[0-31],
\c dst[32-63] := src[32-63] AND dst[32-63],
\c dst[64-95] := src[64-95] AND dst[64-95],
\c dst[96-127] := src[96-127] AND dst[96-127].
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\S{insARPL} \i\c{ARPL}: Adjust RPL Field of Selector
\c ARPL r/m16,reg16 ; 63 /r [286,PRIV]
\c{ARPL} expects its two word operands to be segment selectors. It
adjusts the \i\c{RPL} (requested privilege level - stored in the bottom
two bits of the selector) field of the destination (first) operand
to ensure that it is no less (i.e. no more privileged than) the \c{RPL}
field of the source operand. The zero flag is set if and only if a
change had to be made.
\S{insBOUND} \i\c{BOUND}: Check Array Index against Bounds
\c BOUND reg16,mem ; o16 62 /r [186]
\c BOUND reg32,mem ; o32 62 /r [386]
\c{BOUND} expects its second operand to point to an area of memory
containing two signed values of the same size as its first operand
(i.e. two words for the 16-bit form; two doublewords for the 32-bit
form). It performs two signed comparisons: if the value in the
register passed as its first operand is less than the first of the
in-memory values, or is greater than or equal to the second, it
throws a \c{BR} exception. Otherwise, it does nothing.
\S{insBSF} \i\c{BSF}, \i\c{BSR}: Bit Scan
\c BSF reg16,r/m16 ; o16 0F BC /r [386]
\c BSF reg32,r/m32 ; o32 0F BC /r [386]
\c BSR reg16,r/m16 ; o16 0F BD /r [386]
\c BSR reg32,r/m32 ; o32 0F BD /r [386]
\b \c{BSF} searches for the least significant set bit in its source
(second) operand, and if it finds one, stores the index in
its destination (first) operand. If no set bit is found, the
contents of the destination operand are undefined. If the source
operand is zero, the zero flag is set.
\b \c{BSR} performs the same function, but searches from the top
instead, so it finds the most significant set bit.
Bit indices are from 0 (least significant) to 15 or 31 (most
significant). The destination operand can only be a register.
The source operand can be a register or a memory location.
\S{insBSWAP} \i\c{BSWAP}: Byte Swap
\c BSWAP reg32 ; o32 0F C8+r [486]
\c{BSWAP} swaps the order of the four bytes of a 32-bit register:
bits 0-7 exchange places with bits 24-31, and bits 8-15 swap with
bits 16-23. There is no explicit 16-bit equivalent: to byte-swap
\c{AX}, \c{BX}, \c{CX} or \c{DX}, \c{XCHG} can be used. When \c{BSWAP}
is used with a 16-bit register, the result is undefined.
\S{insBT} \i\c{BT}, \i\c{BTC}, \i\c{BTR}, \i\c{BTS}: Bit Test
\c BT r/m16,reg16 ; o16 0F A3 /r [386]
\c BT r/m32,reg32 ; o32 0F A3 /r [386]
\c BT r/m16,imm8 ; o16 0F BA /4 ib [386]
\c BT r/m32,imm8 ; o32 0F BA /4 ib [386]
\c BTC r/m16,reg16 ; o16 0F BB /r [386]
\c BTC r/m32,reg32 ; o32 0F BB /r [386]
\c BTC r/m16,imm8 ; o16 0F BA /7 ib [386]
\c BTC r/m32,imm8 ; o32 0F BA /7 ib [386]
\c BTR r/m16,reg16 ; o16 0F B3 /r [386]
\c BTR r/m32,reg32 ; o32 0F B3 /r [386]
\c BTR r/m16,imm8 ; o16 0F BA /6 ib [386]
\c BTR r/m32,imm8 ; o32 0F BA /6 ib [386]
\c BTS r/m16,reg16 ; o16 0F AB /r [386]
\c BTS r/m32,reg32 ; o32 0F AB /r [386]
\c BTS r/m16,imm ; o16 0F BA /5 ib [386]
\c BTS r/m32,imm ; o32 0F BA /5 ib [386]
These instructions all test one bit of their first operand, whose
index is given by the second operand, and store the value of that
bit into the carry flag. Bit indices are from 0 (least significant)
to 15 or 31 (most significant).
In addition to storing the original value of the bit into the carry
flag, \c{BTR} also resets (clears) the bit in the operand itself.
\c{BTS} sets the bit, and \c{BTC} complements the bit. \c{BT} does
not modify its operands.
The destination can be a register or a memory location. The source can
be a register or an immediate value.
If the destination operand is a register, the bit offset should be
in the range 0-15 (for 16-bit operands) or 0-31 (for 32-bit operands).
An immediate value outside these ranges will be taken modulo 16/32
by the processor.
If the destination operand is a memory location, then an immediate
bit offset follows the same rules as for a register. If the bit offset
is in a register, then it can be anything within the signed range of
the register used (ie, for a 32-bit operand, it can be (-2^31) to (2^31 - 1)
\S{insCALL} \i\c{CALL}: Call Subroutine
\c CALL imm ; E8 rw/rd [8086]
\c CALL imm:imm16 ; o16 9A iw iw [8086]
\c CALL imm:imm32 ; o32 9A id iw [386]
\c CALL FAR mem16 ; o16 FF /3 [8086]
\c CALL FAR mem32 ; o32 FF /3 [386]
\c CALL r/m16 ; o16 FF /2 [8086]
\c CALL r/m32 ; o32 FF /2 [386]
\c{CALL} calls a subroutine, by means of pushing the current
instruction pointer (\c{IP}) and optionally \c{CS} as well on the
stack, and then jumping to a given address.
\c{CS} is pushed as well as \c{IP} if and only if the call is a far
call, i.e. a destination segment address is specified in the
instruction. The forms involving two colon-separated arguments are
far calls; so are the \c{CALL FAR mem} forms.
The immediate \i{near call} takes one of two forms (\c{call imm16/imm32},
determined by the current segment size limit. For 16-bit operands,
you would use \c{CALL 0x1234}, and for 32-bit operands you would use
\c{CALL 0x12345678}. The value passed as an operand is a relative offset.
You can choose between the two immediate \i{far call} forms
(\c{CALL imm:imm}) by the use of the \c{WORD} and \c{DWORD} keywords:
\c{CALL WORD 0x1234:0x5678}) or \c{CALL DWORD 0x1234:0x56789abc}.
The \c{CALL FAR mem} forms execute a far call by loading the
destination address out of memory. The address loaded consists of 16
or 32 bits of offset (depending on the operand size), and 16 bits of
segment. The operand size may be overridden using \c{CALL WORD FAR
mem} or \c{CALL DWORD FAR mem}.
The \c{CALL r/m} forms execute a \i{near call} (within the same
segment), loading the destination address out of memory or out of a
register. The keyword \c{NEAR} may be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be
overridden using \c{CALL WORD mem} or \c{CALL DWORD mem}.
As a convenience, NASM does not require you to call a far procedure
symbol by coding the cumbersome \c{CALL SEG routine:routine}, but
instead allows the easier synonym \c{CALL FAR routine}.
The \c{CALL r/m} forms given above are near calls; NASM will accept
the \c{NEAR} keyword (e.g. \c{CALL NEAR [address]}), even though it
is not strictly necessary.
\S{insCBW} \i\c{CBW}, \i\c{CWD}, \i\c{CDQ}, \i\c{CWDE}: Sign Extensions
\c CBW ; o16 98 [8086]
\c CWDE ; o32 98 [386]
\c CWD ; o16 99 [8086]
\c CDQ ; o32 99 [386]
All these instructions sign-extend a short value into a longer one,
by replicating the top bit of the original value to fill the
extended one.
\c{CBW} extends \c{AL} into \c{AX} by repeating the top bit of
\c{AL} in every bit of \c{AH}. \c{CWDE} extends \c{AX} into
\c{EAX}. \c{CWD} extends \c{AX} into \c{DX:AX} by repeating
the top bit of \c{AX} throughout \c{DX}, and \c{CDQ} extends
\c{EAX} into \c{EDX:EAX}.
\S{insCLC} \i\c{CLC}, \i\c{CLD}, \i\c{CLI}, \i\c{CLTS}: Clear Flags
\c CLC ; F8 [8086]
\c CLD ; FC [8086]
\c CLI ; FA [8086]
\c CLTS ; 0F 06 [286,PRIV]
These instructions clear various flags. \c{CLC} clears the carry
flag; \c{CLD} clears the direction flag; \c{CLI} clears the
interrupt flag (thus disabling interrupts); and \c{CLTS} clears the
task-switched (\c{TS}) flag in \c{CR0}.
To set the carry, direction, or interrupt flags, use the \c{STC},
\c{STD} and \c{STI} instructions (\k{insSTC}). To invert the carry
flag, use \c{CMC} (\k{insCMC}).
\S{insCLFLUSH} \i\c{CLFLUSH}: Flush Cache Line
\c CLFLUSH mem ; 0F AE /7 [WILLAMETTE,SSE2]
\c{CLFLUSH} invalidates the cache line that contains the linear address
specified by the source operand from all levels of the processor cache
hierarchy (data and instruction). If, at any level of the cache
hierarchy, the line is inconsistent with memory (dirty) it is written
to memory before invalidation. The source operand points to a
byte-sized memory location.
Although \c{CLFLUSH} is flagged \c{SSE2} and above, it may not be
present on all processors which have \c{SSE2} support, and it may be
supported on other processors; the \c{CPUID} instruction (\k{insCPUID})
will return a bit which indicates support for the \c{CLFLUSH} instruction.
\S{insCMC} \i\c{CMC}: Complement Carry Flag
\c CMC ; F5 [8086]
\c{CMC} changes the value of the carry flag: if it was 0, it sets it
to 1, and vice versa.
\S{insCMOVcc} \i\c{CMOVcc}: Conditional Move
\c CMOVcc reg16,r/m16 ; o16 0F 40+cc /r [P6]
\c CMOVcc reg32,r/m32 ; o32 0F 40+cc /r [P6]
\c{CMOV} moves its source (second) operand into its destination
(first) operand if the given condition code is satisfied; otherwise
it does nothing.
For a list of condition codes, see \k{iref-cc}.
Although the \c{CMOV} instructions are flagged \c{P6} and above, they
may not be supported by all Pentium Pro processors; the \c{CPUID}
instruction (\k{insCPUID}) will return a bit which indicates whether
conditional moves are supported.
\S{insCMP} \i\c{CMP}: Compare Integers
\c CMP r/m8,reg8 ; 38 /r [8086]
\c CMP r/m16,reg16 ; o16 39 /r [8086]
\c CMP r/m32,reg32 ; o32 39 /r [386]
\c CMP reg8,r/m8 ; 3A /r [8086]
\c CMP reg16,r/m16 ; o16 3B /r [8086]
\c CMP reg32,r/m32 ; o32 3B /r [386]
\c CMP r/m8,imm8 ; 80 /7 ib [8086]
\c CMP r/m16,imm16 ; o16 81 /7 iw [8086]
\c CMP r/m32,imm32 ; o32 81 /7 id [386]
\c CMP r/m16,imm8 ; o16 83 /7 ib [8086]
\c CMP r/m32,imm8 ; o32 83 /7 ib [386]
\c CMP AL,imm8 ; 3C ib [8086]
\c CMP AX,imm16 ; o16 3D iw [8086]
\c CMP EAX,imm32 ; o32 3D id [386]
\c{CMP} performs a `mental' subtraction of its second operand from
its first operand, and affects the flags as if the subtraction had
taken place, but does not store the result of the subtraction
anywhere.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
The destination operand can be a register or a memory location. The
source can be a register, memory location or an immediate value of
the same size as the destination.
\S{insCMPccPD} \i\c{CMPccPD}: Packed Double-Precision FP Compare
\I\c{CMPEQPD} \I\c{CMPLTPD} \I\c{CMPLEPD} \I\c{CMPUNORDPD}
\I\c{CMPNEQPD} \I\c{CMPNLTPD} \I\c{CMPNLEPD} \I\c{CMPORDPD}
\c CMPPD xmm1,xmm2/mem128,imm8 ; 66 0F C2 /r ib [WILLAMETTE,SSE2]
\c CMPEQPD xmm1,xmm2/mem128 ; 66 0F C2 /r 00 [WILLAMETTE,SSE2]
\c CMPLTPD xmm1,xmm2/mem128 ; 66 0F C2 /r 01 [WILLAMETTE,SSE2]
\c CMPLEPD xmm1,xmm2/mem128 ; 66 0F C2 /r 02 [WILLAMETTE,SSE2]
\c CMPUNORDPD xmm1,xmm2/mem128 ; 66 0F C2 /r 03 [WILLAMETTE,SSE2]
\c CMPNEQPD xmm1,xmm2/mem128 ; 66 0F C2 /r 04 [WILLAMETTE,SSE2]
\c CMPNLTPD xmm1,xmm2/mem128 ; 66 0F C2 /r 05 [WILLAMETTE,SSE2]
\c CMPNLEPD xmm1,xmm2/mem128 ; 66 0F C2 /r 06 [WILLAMETTE,SSE2]
\c CMPORDPD xmm1,xmm2/mem128 ; 66 0F C2 /r 07 [WILLAMETTE,SSE2]
The \c{CMPccPD} instructions compare the two packed double-precision
FP values in the source and destination operands, and returns the
result of the comparison in the destination register. The result of
each comparison is a quadword mask of all 1s (comparison true) or
all 0s (comparison false).
The destination is an \c{XMM} register. The source can be either an
\c{XMM} register or a 128-bit memory location.
The third operand is an 8-bit immediate value, of which the low 3
bits define the type of comparison. For ease of programming, the
8 two-operand pseudo-instructions are provided, with the third
operand already filled in. The \I{Condition Predicates}
\c{Condition Predicates} are:
\c EQ 0 Equal
\c LT 1 Less-than
\c LE 2 Less-than-or-equal
\c UNORD 3 Unordered
\c NE 4 Not-equal
\c NLT 5 Not-less-than
\c NLE 6 Not-less-than-or-equal
\c ORD 7 Ordered
For more details of the comparison predicates, and details of how
to emulate the "greater-than" equivalents, see \k{iref-SSE-cc}
\S{insCMPccPS} \i\c{CMPccPS}: Packed Single-Precision FP Compare
\I\c{CMPEQPS} \I\c{CMPLTPS} \I\c{CMPLEPS} \I\c{CMPUNORDPS}
\I\c{CMPNEQPS} \I\c{CMPNLTPS} \I\c{CMPNLEPS} \I\c{CMPORDPS}
\c CMPPS xmm1,xmm2/mem128,imm8 ; 0F C2 /r ib [KATMAI,SSE]
\c CMPEQPS xmm1,xmm2/mem128 ; 0F C2 /r 00 [KATMAI,SSE]
\c CMPLTPS xmm1,xmm2/mem128 ; 0F C2 /r 01 [KATMAI,SSE]
\c CMPLEPS xmm1,xmm2/mem128 ; 0F C2 /r 02 [KATMAI,SSE]
\c CMPUNORDPS xmm1,xmm2/mem128 ; 0F C2 /r 03 [KATMAI,SSE]
\c CMPNEQPS xmm1,xmm2/mem128 ; 0F C2 /r 04 [KATMAI,SSE]
\c CMPNLTPS xmm1,xmm2/mem128 ; 0F C2 /r 05 [KATMAI,SSE]
\c CMPNLEPS xmm1,xmm2/mem128 ; 0F C2 /r 06 [KATMAI,SSE]
\c CMPORDPS xmm1,xmm2/mem128 ; 0F C2 /r 07 [KATMAI,SSE]
The \c{CMPccPS} instructions compare the two packed single-precision
FP values in the source and destination operands, and returns the
result of the comparison in the destination register. The result of
each comparison is a doubleword mask of all 1s (comparison true) or
all 0s (comparison false).
The destination is an \c{XMM} register. The source can be either an
\c{XMM} register or a 128-bit memory location.
The third operand is an 8-bit immediate value, of which the low 3
bits define the type of comparison. For ease of programming, the
8 two-operand pseudo-instructions are provided, with the third
operand already filled in. The \I{Condition Predicates}
\c{Condition Predicates} are:
\c EQ 0 Equal
\c LT 1 Less-than
\c LE 2 Less-than-or-equal
\c UNORD 3 Unordered
\c NE 4 Not-equal
\c NLT 5 Not-less-than
\c NLE 6 Not-less-than-or-equal
\c ORD 7 Ordered
For more details of the comparison predicates, and details of how
to emulate the "greater-than" equivalents, see \k{iref-SSE-cc}
\S{insCMPSB} \i\c{CMPSB}, \i\c{CMPSW}, \i\c{CMPSD}: Compare Strings
\c CMPSB ; A6 [8086]
\c CMPSW ; o16 A7 [8086]
\c CMPSD ; o32 A7 [386]
\c{CMPSB} compares the byte at \c{[DS:SI]} or \c{[DS:ESI]} with the
byte at \c{[ES:DI]} or \c{[ES:EDI]}, and sets the flags accordingly.
It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) \c{SI} and
\c{DI} (or \c{ESI} and \c{EDI}).
The registers used are \c{SI} and \c{DI} if the address size is 16
bits, and \c{ESI} and \c{EDI} if it is 32 bits. If you need to use
an address size not equal to the current \c{BITS} setting, you can
use an explicit \i\c{a16} or \i\c{a32} prefix.
The segment register used to load from \c{[SI]} or \c{[ESI]} can be
overridden by using a segment register name as a prefix (for
example, \c{ES CMPSB}). The use of \c{ES} for the load from \c{[DI]}
or \c{[EDI]} cannot be overridden.
\c{CMPSW} and \c{CMPSD} work in the same way, but they compare a
word or a doubleword instead of a byte, and increment or decrement
the addressing registers by 2 or 4 instead of 1.
The \c{REPE} and \c{REPNE} prefixes (equivalently, \c{REPZ} and
\c{REPNZ}) may be used to repeat the instruction up to \c{CX} (or
\c{ECX} - again, the address size chooses which) times until the
first unequal or equal byte is found.
\S{insCMPccSD} \i\c{CMPccSD}: Scalar Double-Precision FP Compare
\I\c{CMPEQSD} \I\c{CMPLTSD} \I\c{CMPLESD} \I\c{CMPUNORDSD}
\I\c{CMPNEQSD} \I\c{CMPNLTSD} \I\c{CMPNLESD} \I\c{CMPORDSD}
\c CMPSD xmm1,xmm2/mem64,imm8 ; F2 0F C2 /r ib [WILLAMETTE,SSE2]
\c CMPEQSD xmm1,xmm2/mem64 ; F2 0F C2 /r 00 [WILLAMETTE,SSE2]
\c CMPLTSD xmm1,xmm2/mem64 ; F2 0F C2 /r 01 [WILLAMETTE,SSE2]
\c CMPLESD xmm1,xmm2/mem64 ; F2 0F C2 /r 02 [WILLAMETTE,SSE2]
\c CMPUNORDSD xmm1,xmm2/mem64 ; F2 0F C2 /r 03 [WILLAMETTE,SSE2]
\c CMPNEQSD xmm1,xmm2/mem64 ; F2 0F C2 /r 04 [WILLAMETTE,SSE2]
\c CMPNLTSD xmm1,xmm2/mem64 ; F2 0F C2 /r 05 [WILLAMETTE,SSE2]
\c CMPNLESD xmm1,xmm2/mem64 ; F2 0F C2 /r 06 [WILLAMETTE,SSE2]
\c CMPORDSD xmm1,xmm2/mem64 ; F2 0F C2 /r 07 [WILLAMETTE,SSE2]
The \c{CMPccSD} instructions compare the low-order double-precision
FP values in the source and destination operands, and returns the
result of the comparison in the destination register. The result of
each comparison is a quadword mask of all 1s (comparison true) or
all 0s (comparison false).
The destination is an \c{XMM} register. The source can be either an
\c{XMM} register or a 128-bit memory location.
The third operand is an 8-bit immediate value, of which the low 3
bits define the type of comparison. For ease of programming, the
8 two-operand pseudo-instructions are provided, with the third
operand already filled in. The \I{Condition Predicates}
\c{Condition Predicates} are:
\c EQ 0 Equal
\c LT 1 Less-than
\c LE 2 Less-than-or-equal
\c UNORD 3 Unordered
\c NE 4 Not-equal
\c NLT 5 Not-less-than
\c NLE 6 Not-less-than-or-equal
\c ORD 7 Ordered
For more details of the comparison predicates, and details of how
to emulate the "greater-than" equivalents, see \k{iref-SSE-cc}
\S{insCMPccSS} \i\c{CMPccSS}: Scalar Single-Precision FP Compare
\I\c{CMPEQSS} \I\c{CMPLTSS} \I\c{CMPLESS} \I\c{CMPUNORDSS}
\I\c{CMPNEQSS} \I\c{CMPNLTSS} \I\c{CMPNLESS} \I\c{CMPORDSS}
\c CMPSS xmm1,xmm2/mem32,imm8 ; F3 0F C2 /r ib [KATMAI,SSE]
\c CMPEQSS xmm1,xmm2/mem32 ; F3 0F C2 /r 00 [KATMAI,SSE]
\c CMPLTSS xmm1,xmm2/mem32 ; F3 0F C2 /r 01 [KATMAI,SSE]
\c CMPLESS xmm1,xmm2/mem32 ; F3 0F C2 /r 02 [KATMAI,SSE]
\c CMPUNORDSS xmm1,xmm2/mem32 ; F3 0F C2 /r 03 [KATMAI,SSE]
\c CMPNEQSS xmm1,xmm2/mem32 ; F3 0F C2 /r 04 [KATMAI,SSE]
\c CMPNLTSS xmm1,xmm2/mem32 ; F3 0F C2 /r 05 [KATMAI,SSE]
\c CMPNLESS xmm1,xmm2/mem32 ; F3 0F C2 /r 06 [KATMAI,SSE]
\c CMPORDSS xmm1,xmm2/mem32 ; F3 0F C2 /r 07 [KATMAI,SSE]
The \c{CMPccSS} instructions compare the low-order single-precision
FP values in the source and destination operands, and returns the
result of the comparison in the destination register. The result of
each comparison is a doubleword mask of all 1s (comparison true) or
all 0s (comparison false).
The destination is an \c{XMM} register. The source can be either an
\c{XMM} register or a 128-bit memory location.
The third operand is an 8-bit immediate value, of which the low 3
bits define the type of comparison. For ease of programming, the
8 two-operand pseudo-instructions are provided, with the third
operand already filled in. The \I{Condition Predicates}
\c{Condition Predicates} are:
\c EQ 0 Equal
\c LT 1 Less-than
\c LE 2 Less-than-or-equal
\c UNORD 3 Unordered
\c NE 4 Not-equal
\c NLT 5 Not-less-than
\c NLE 6 Not-less-than-or-equal
\c ORD 7 Ordered
For more details of the comparison predicates, and details of how
to emulate the "greater-than" equivalents, see \k{iref-SSE-cc}
\S{insCMPXCHG} \i\c{CMPXCHG}, \i\c{CMPXCHG486}: Compare and Exchange
\c CMPXCHG r/m8,reg8 ; 0F B0 /r [PENT]
\c CMPXCHG r/m16,reg16 ; o16 0F B1 /r [PENT]
\c CMPXCHG r/m32,reg32 ; o32 0F B1 /r [PENT]
\c CMPXCHG486 r/m8,reg8 ; 0F A6 /r [486,UNDOC]
\c CMPXCHG486 r/m16,reg16 ; o16 0F A7 /r [486,UNDOC]
\c CMPXCHG486 r/m32,reg32 ; o32 0F A7 /r [486,UNDOC]
These two instructions perform exactly the same operation; however,
apparently some (not all) 486 processors support it under a
non-standard opcode, so NASM provides the undocumented
\c{CMPXCHG486} form to generate the non-standard opcode.
\c{CMPXCHG} compares its destination (first) operand to the value in
\c{AL}, \c{AX} or \c{EAX} (depending on the operand size of the
instruction). If they are equal, it copies its source (second)
operand into the destination and sets the zero flag. Otherwise, it
clears the zero flag and copies the destination register to AL, AX or EAX.
The destination can be either a register or a memory location. The
source is a register.
\c{CMPXCHG} is intended to be used for atomic operations in
multitasking or multiprocessor environments. To safely update a
value in shared memory, for example, you might load the value into
\c{EAX}, load the updated value into \c{EBX}, and then execute the
instruction \c{LOCK CMPXCHG [value],EBX}. If \c{value} has not
changed since being loaded, it is updated with your desired new
value, and the zero flag is set to let you know it has worked. (The
\c{LOCK} prefix prevents another processor doing anything in the
middle of this operation: it guarantees atomicity.) However, if
another processor has modified the value in between your load and
your attempted store, the store does not happen, and you are
notified of the failure by a cleared zero flag, so you can go round
and try again.
\S{insCMPXCHG8B} \i\c{CMPXCHG8B}: Compare and Exchange Eight Bytes
\c CMPXCHG8B mem ; 0F C7 /1 [PENT]
This is a larger and more unwieldy version of \c{CMPXCHG}: it
compares the 64-bit (eight-byte) value stored at \c{[mem]} with the
value in \c{EDX:EAX}. If they are equal, it sets the zero flag and
stores \c{ECX:EBX} into the memory area. If they are unequal, it
clears the zero flag and stores the memory contents into \c{EDX:EAX}.
\c{CMPXCHG8B} can be used with the \c{LOCK} prefix, to allow atomic
execution. This is useful in multi-processor and multi-tasking
environments.
\S{insCOMISD} \i\c{COMISD}: Scalar Ordered Double-Precision FP Compare and Set EFLAGS
\c COMISD xmm1,xmm2/mem64 ; 66 0F 2F /r [WILLAMETTE,SSE2]
\c{COMISD} compares the low-order double-precision FP value in the
two source operands. ZF, PF and CF are set according to the result.
OF, AF and AF are cleared. The unordered result is returned if either
source is a NaN (QNaN or SNaN).
The destination operand is an \c{XMM} register. The source can be either
an \c{XMM} register or a memory location.
The flags are set according to the following rules:
\c Result Flags Values
\c UNORDERED: ZF,PF,CF <-- 111;
\c GREATER_THAN: ZF,PF,CF <-- 000;
\c LESS_THAN: ZF,PF,CF <-- 001;
\c EQUAL: ZF,PF,CF <-- 100;
\S{insCOMISS} \i\c{COMISS}: Scalar Ordered Single-Precision FP Compare and Set EFLAGS
\c COMISS xmm1,xmm2/mem32 ; 66 0F 2F /r [KATMAI,SSE]
\c{COMISS} compares the low-order single-precision FP value in the
two source operands. ZF, PF and CF are set according to the result.
OF, AF and AF are cleared. The unordered result is returned if either
source is a NaN (QNaN or SNaN).
The destination operand is an \c{XMM} register. The source can be either
an \c{XMM} register or a memory location.
The flags are set according to the following rules:
\c Result Flags Values
\c UNORDERED: ZF,PF,CF <-- 111;
\c GREATER_THAN: ZF,PF,CF <-- 000;
\c LESS_THAN: ZF,PF,CF <-- 001;
\c EQUAL: ZF,PF,CF <-- 100;
\S{insCPUID} \i\c{CPUID}: Get CPU Identification Code
\c CPUID ; 0F A2 [PENT]
\c{CPUID} returns various information about the processor it is
being executed on. It fills the four registers \c{EAX}, \c{EBX},
\c{ECX} and \c{EDX} with information, which varies depending on the
input contents of \c{EAX}.
\c{CPUID} also acts as a barrier to serialize instruction execution:
executing the \c{CPUID} instruction guarantees that all the effects
(memory modification, flag modification, register modification) of
previous instructions have been completed before the next
instruction gets fetched.
The information returned is as follows:
\b If \c{EAX} is zero on input, \c{EAX} on output holds the maximum
acceptable input value of \c{EAX}, and \c{EBX:EDX:ECX} contain the
string \c{"GenuineIntel"} (or not, if you have a clone processor).
That is to say, \c{EBX} contains \c{"Genu"} (in NASM's own sense of
character constants, described in \k{chrconst}), \c{EDX} contains
\c{"ineI"} and \c{ECX} contains \c{"ntel"}.
\b If \c{EAX} is one on input, \c{EAX} on output contains version
information about the processor, and \c{EDX} contains a set of
feature flags, showing the presence and absence of various features.
For example, bit 8 is set if the \c{CMPXCHG8B} instruction
(\k{insCMPXCHG8B}) is supported, bit 15 is set if the conditional
move instructions (\k{insCMOVcc} and \k{insFCMOVB}) are supported,
and bit 23 is set if \c{MMX} instructions are supported.
\b If \c{EAX} is two on input, \c{EAX}, \c{EBX}, \c{ECX} and \c{EDX}
all contain information about caches and TLBs (Translation Lookahead
Buffers).
For more information on the data returned from \c{CPUID}, see the
documentation from Intel and other processor manufacturers.
\S{insCVTDQ2PD} \i\c{CVTDQ2PD}:
Packed Signed INT32 to Packed Double-Precision FP Conversion
\c CVTDQ2PD xmm1,xmm2/mem64 ; F3 0F E6 /r [WILLAMETTE,SSE2]
\c{CVTDQ2PD} converts two packed signed doublewords from the source
operand to two packed double-precision FP values in the destination
operand.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the
source is a register, the packed integers are in the low quadword.
\S{insCVTDQ2PS} \i\c{CVTDQ2PS}:
Packed Signed INT32 to Packed Single-Precision FP Conversion
\c CVTDQ2PS xmm1,xmm2/mem128 ; 0F 5B /r [WILLAMETTE,SSE2]
\c{CVTDQ2PS} converts four packed signed doublewords from the source
operand to four packed single-precision FP values in the destination
operand.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPD2DQ} \i\c{CVTPD2DQ}:
Packed Double-Precision FP to Packed Signed INT32 Conversion
\c CVTPD2DQ xmm1,xmm2/mem128 ; F2 0F E6 /r [WILLAMETTE,SSE2]
\c{CVTPD2DQ} converts two packed double-precision FP values from the
source operand to two packed signed doublewords in the low quadword
of the destination operand. The high quadword of the destination is
set to all 0s.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPD2PI} \i\c{CVTPD2PI}:
Packed Double-Precision FP to Packed Signed INT32 Conversion
\c CVTPD2PI mm,xmm/mem128 ; 66 0F 2D /r [WILLAMETTE,SSE2]
\c{CVTPD2PI} converts two packed double-precision FP values from the
source operand to two packed signed doublewords in the destination
operand.
The destination operand is an \c{MMX} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPD2PS} \i\c{CVTPD2PS}:
Packed Double-Precision FP to Packed Single-Precision FP Conversion
\c CVTPD2PS xmm1,xmm2/mem128 ; 66 0F 5A /r [WILLAMETTE,SSE2]
\c{CVTPD2PS} converts two packed double-precision FP values from the
source operand to two packed single-precision FP values in the low
quadword of the destination operand. The high quadword of the
destination is set to all 0s.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPI2PD} \i\c{CVTPI2PD}:
Packed Signed INT32 to Packed Double-Precision FP Conversion
\c CVTPI2PD xmm,mm/mem64 ; 66 0F 2A /r [WILLAMETTE,SSE2]
\c{CVTPI2PD} converts two packed signed doublewords from the source
operand to two packed double-precision FP values in the destination
operand.
The destination operand is an \c{XMM} register. The source can be
either an \c{MMX} register or a 64-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPI2PS} \i\c{CVTPI2PS}:
Packed Signed INT32 to Packed Single-FP Conversion
\c CVTPI2PS xmm,mm/mem64 ; 0F 2A /r [KATMAI,SSE]
\c{CVTPI2PS} converts two packed signed doublewords from the source
operand to two packed single-precision FP values in the low quadword
of the destination operand. The high quadword of the destination
remains unchanged.
The destination operand is an \c{XMM} register. The source can be
either an \c{MMX} register or a 64-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPS2DQ} \i\c{CVTPS2DQ}:
Packed Single-Precision FP to Packed Signed INT32 Conversion
\c CVTPS2DQ xmm1,xmm2/mem128 ; 66 0F 5B /r [WILLAMETTE,SSE2]
\c{CVTPS2DQ} converts four packed single-precision FP values from the
source operand to four packed signed doublewords in the destination operand.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPS2PD} \i\c{CVTPS2PD}:
Packed Single-Precision FP to Packed Double-Precision FP Conversion
\c CVTPS2PD xmm1,xmm2/mem64 ; 0F 5A /r [WILLAMETTE,SSE2]
\c{CVTPS2PD} converts two packed single-precision FP values from the
source operand to two packed double-precision FP values in the destination
operand.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the source
is a register, the input values are in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTPS2PI} \i\c{CVTPS2PI}:
Packed Single-Precision FP to Packed Signed INT32 Conversion
\c CVTPS2PI mm,xmm/mem64 ; 0F 2D /r [KATMAI,SSE]
\c{CVTPS2PI} converts two packed single-precision FP values from
the source operand to two packed signed doublewords in the destination
operand.
The destination operand is an \c{MMX} register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the
source is a register, the input values are in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSD2SI} \i\c{CVTSD2SI}:
Scalar Double-Precision FP to Signed INT32 Conversion
\c CVTSD2SI reg32,xmm/mem64 ; F2 0F 2D /r [WILLAMETTE,SSE2]
\c{CVTSD2SI} converts a double-precision FP value from the source
operand to a signed doubleword in the destination operand.
The destination operand is a general purpose register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the
source is a register, the input value is in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSD2SS} \i\c{CVTSD2SS}:
Scalar Double-Precision FP to Scalar Single-Precision FP Conversion
\c CVTSD2SS xmm1,xmm2/mem64 ; F2 0F 5A /r [KATMAI,SSE]
\c{CVTSD2SS} converts a double-precision FP value from the source
operand to a single-precision FP value in the low doubleword of the
destination operand. The upper 3 doublewords are left unchanged.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the
source is a register, the input value is in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSI2SD} \i\c{CVTSI2SD}:
Signed INT32 to Scalar Double-Precision FP Conversion
\c CVTSI2SD xmm,r/m32 ; F2 0F 2A /r [WILLAMETTE,SSE2]
\c{CVTSI2SD} converts a signed doubleword from the source operand to
a double-precision FP value in the low quadword of the destination
operand. The high quadword is left unchanged.
The destination operand is an \c{XMM} register. The source can be either
a general purpose register or a 32-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSI2SS} \i\c{CVTSI2SS}:
Signed INT32 to Scalar Single-Precision FP Conversion
\c CVTSI2SS xmm,r/m32 ; F3 0F 2A /r [KATMAI,SSE]
\c{CVTSI2SS} converts a signed doubleword from the source operand to a
single-precision FP value in the low doubleword of the destination operand.
The upper 3 doublewords are left unchanged.
The destination operand is an \c{XMM} register. The source can be either
a general purpose register or a 32-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSS2SD} \i\c{CVTSS2SD}:
Scalar Single-Precision FP to Scalar Double-Precision FP Conversion
\c CVTSS2SD xmm1,xmm2/mem32 ; F3 0F 5A /r [WILLAMETTE,SSE2]
\c{CVTSS2SD} converts a single-precision FP value from the source operand
to a double-precision FP value in the low quadword of the destination
operand. The upper quadword is left unchanged.
The destination operand is an \c{XMM} register. The source can be either
an \c{XMM} register or a 32-bit memory location. If the source is a
register, the input value is contained in the low doubleword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTSS2SI} \i\c{CVTSS2SI}:
Scalar Single-Precision FP to Signed INT32 Conversion
\c CVTSS2SI reg32,xmm/mem32 ; F3 0F 2D /r [KATMAI,SSE]
\c{CVTSS2SI} converts a single-precision FP value from the source
operand to a signed doubleword in the destination operand.
The destination operand is a general purpose register. The source can be
either an \c{XMM} register or a 32-bit memory location. If the
source is a register, the input value is in the low doubleword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTPD2DQ} \i\c{CVTTPD2DQ}:
Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
\c CVTTPD2DQ xmm1,xmm2/mem128 ; 66 0F E6 /r [WILLAMETTE,SSE2]
\c{CVTTPD2DQ} converts two packed double-precision FP values in the source
operand to two packed single-precision FP values in the destination operand.
If the result is inexact, it is truncated (rounded toward zero). The high
quadword is set to all 0s.
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTPD2PI} \i\c{CVTTPD2PI}:
Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
\c CVTTPD2PI mm,xmm/mem128 ; 66 0F 2C /r [WILLAMETTE,SSE2]
\c{CVTTPD2PI} converts two packed double-precision FP values in the source
operand to two packed single-precision FP values in the destination operand.
If the result is inexact, it is truncated (rounded toward zero).
The destination operand is an \c{MMX} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTPS2DQ} \i\c{CVTTPS2DQ}:
Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
\c CVTTPS2DQ xmm1,xmm2/mem128 ; F3 0F 5B /r [WILLAMETTE,SSE2]
\c{CVTTPS2DQ} converts four packed single-precision FP values in the source
operand to four packed signed doublewords in the destination operand.
If the result is inexact, it is truncated (rounded toward zero).
The destination operand is an \c{XMM} register. The source can be
either an \c{XMM} register or a 128-bit memory location.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTPS2PI} \i\c{CVTTPS2PI}:
Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
\c CVTTPS2PI mm,xmm/mem64 ; 0F 2C /r [KATMAI,SSE]
\c{CVTTPS2PI} converts two packed single-precision FP values in the source
operand to two packed signed doublewords in the destination operand.
If the result is inexact, it is truncated (rounded toward zero). If
the source is a register, the input values are in the low quadword.
The destination operand is an \c{MMX} register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the source
is a register, the input value is in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTSD2SI} \i\c{CVTTSD2SI}:
Scalar Double-Precision FP to Signed INT32 Conversion with Truncation
\c CVTTSD2SI reg32,xmm/mem64 ; F2 0F 2C /r [WILLAMETTE,SSE2]
\c{CVTTSD2SI} converts a double-precision FP value in the source operand
to a signed doubleword in the destination operand. If the result is
inexact, it is truncated (rounded toward zero).
The destination operand is a general purpose register. The source can be
either an \c{XMM} register or a 64-bit memory location. If the source is a
register, the input value is in the low quadword.
For more details of this instruction, see the Intel Processor manuals.
\S{insCVTTSS2SI} \i\c{CVTTSS2SI}:
Scalar Single-Precision FP to Signed INT32 Conversion with Truncation
\c CVTTSD2SI reg32,xmm/mem32 ; F3 0F 2C /r [KATMAI,SSE]
\c{CVTTSS2SI} converts a single-precision FP value in the source operand
to a signed doubleword in the destination operand. If the result is
inexact, it is truncated (rounded toward zero).
The destination operand is a general purpose register. The source can be
either an \c{XMM} register or a 32-bit memory location. If the source is a
register, the input value is in the low doubleword.
For more details of this instruction, see the Intel Processor manuals.
\S{insDAA} \i\c{DAA}, \i\c{DAS}: Decimal Adjustments
\c DAA ; 27 [8086]
\c DAS ; 2F [8086]
These instructions are used in conjunction with the add and subtract
instructions to perform binary-coded decimal arithmetic in
\e{packed} (one BCD digit per nibble) form. For the unpacked
equivalents, see \k{insAAA}.
\c{DAA} should be used after a one-byte \c{ADD} instruction whose
destination was the \c{AL} register: by means of examining the value
in the \c{AL} and also the auxiliary carry flag \c{AF}, it
determines whether either digit of the addition has overflowed, and
adjusts it (and sets the carry and auxiliary-carry flags) if so. You
can add long BCD strings together by doing \c{ADD}/\c{DAA} on the
low two digits, then doing \c{ADC}/\c{DAA} on each subsequent pair
of digits.
\c{DAS} works similarly to \c{DAA}, but is for use after \c{SUB}
instructions rather than \c{ADD}.
\S{insDEC} \i\c{DEC}: Decrement Integer
\c DEC reg16 ; o16 48+r [8086]
\c DEC reg32 ; o32 48+r [386]
\c DEC r/m8 ; FE /1 [8086]
\c DEC r/m16 ; o16 FF /1 [8086]
\c DEC r/m32 ; o32 FF /1 [386]
\c{DEC} subtracts 1 from its operand. It does \e{not} affect the
carry flag: to affect the carry flag, use \c{SUB something,1} (see
\k{insSUB}). \c{DEC} affects all the other flags according to the result.
This instruction can be used with a \c{LOCK} prefix to allow atomic
execution.
See also \c{INC} (\k{insINC}).
\S{insDIV} \i\c{DIV}: Unsigned Integer Divide
\c DIV r/m8 ; F6 /6 [8086]
\c DIV r/m16 ; o16 F7 /6 [8086]
\c DIV r/m32 ; o32 F7 /6 [386]
\c{DIV} performs unsigned integer division. The explicit operand
provided is the divisor; the dividend and destination operands are
implicit, in the following way:
\b For \c{DIV r/m8}, \c{AX} is divided by the given operand; the
quotient is stored in \c{AL} and the remainder in \c{AH}.
\b For \c{DIV r/m16}, \c{DX:AX} is divided by the given operand; the
quotient is stored in \c{AX} and the remainder in \c{DX}.
\b For \c{DIV r/m32}, \c{EDX:EAX} is divided by the given operand;
the quotient is stored in \c{EAX} and the remainder in \c{EDX}.
Signed integer division is performed by the \c{IDIV} instruction:
see \k{insIDIV}.
\S{insDIVPD} \i\c{DIVPD}: Packed Double-Precision FP Divide
\c DIVPD xmm1,xmm2/mem128 ; 66 0F 5E /r [WILLAMETTE,SSE2]
\c{DIVPD} divides the two packed double-precision FP values in
the destination operand by the two packed double-precision FP
values in the source operand, and stores the packed double-precision
results in the destination register.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\c dst[0-63] := dst[0-63] / src[0-63],
\c dst[64-127] := dst[64-127] / src[64-127].
\S{insDIVPS} \i\c{DIVPS}: Packed Single-Precision FP Divide
\c DIVPS xmm1,xmm2/mem128 ; 0F 5E /r [KATMAI,SSE]
\c{DIVPS} divides the four packed single-precision FP values in
the destination operand by the four packed single-precision FP
values in the source operand, and stores the packed single-precision
results in the destination register.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 128-bit memory location.
\c dst[0-31] := dst[0-31] / src[0-31],
\c dst[32-63] := dst[32-63] / src[32-63],
\c dst[64-95] := dst[64-95] / src[64-95],
\c dst[96-127] := dst[96-127] / src[96-127].
\S{insDIVSD} \i\c{DIVSD}: Scalar Double-Precision FP Divide
\c DIVSD xmm1,xmm2/mem64 ; F2 0F 5E /r [WILLAMETTE,SSE2]
\c{DIVSD} divides the low-order double-precision FP value in the
destination operand by the low-order double-precision FP value in
the source operand, and stores the double-precision result in the
destination register.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 64-bit memory location.
\c dst[0-63] := dst[0-63] / src[0-63],
\c dst[64-127] remains unchanged.
\S{insDIVSS} \i\c{DIVSS}: Scalar Single-Precision FP Divide
\c DIVSS xmm1,xmm2/mem32 ; F3 0F 5E /r [KATMAI,SSE]
\c{DIVSS} divides the low-order single-precision FP value in the
destination operand by the low-order single-precision FP value in
the source operand, and stores the single-precision result in the
destination register.
The destination is an \c{XMM} register. The source operand can be
either an \c{XMM} register or a 32-bit memory location.
\c dst[0-31] := dst[0-31] / src[0-31],
\c dst[32-127] remains unchanged.
\S{insEMMS} \i\c{EMMS}: Empty MMX State
\c EMMS ; 0F 77 [PENT,MMX]
\c{EMMS} sets the FPU tag word (marking which floating-point registers
are available) to all ones, meaning all registers are available for
the FPU to use. It should be used after executing \c{MMX} instructions
and before executing any subsequent floating-point operations.
\S{insENTER} \i\c{ENTER}: Create Stack Frame
\c ENTER imm,imm ; C8 iw ib [186]
\c{ENTER} constructs a \i\c{stack frame} for a high-level language
procedure call. The first operand (the \c{iw} in the opcode
definition above refers to the first operand) gives the amount of
stack space to allocate for local variables; the second (the \c{ib}
above) gives the nesting level of the procedure (for languages like
Pascal, with nested procedures).
The function of \c{ENTER}, with a nesting level of zero, is
equivalent to
\c PUSH EBP ; or PUSH BP in 16 bits
\c MOV EBP,ESP ; or MOV BP,SP in 16 bits
\c SUB ESP,operand1 ; or SUB SP,operand1 in 16 bits
This creates a stack frame with the procedure parameters accessible
upwards from \c{EBP}, and local variables accessible downwards from
\c{EBP}.
With a nesting level of one, the stack frame created is 4 (or 2)
bytes bigger, and the value of the final frame pointer \c{EBP} is
accessible in memory at \c{[EBP-4]}.
This allows \c{ENTER}, when called with a nesting level of two, to
look at the stack frame described by the \e{previous} value of
\c{EBP}, find the frame pointer at offset -4 from that, and push it
along with its new frame pointer, so that when a level-two procedure
is called from within a level-one procedure, \c{[EBP-4]} holds the
frame pointer of the most recent level-one procedure call and
\c{[EBP-8]} holds that of the most recent level-two call. And so on,
for nesting levels up to 31.
Stack frames created by \c{ENTER} can be destroyed by the \c{LEAVE}
instruction: see \k{insLEAVE}.
\S{insF2XM1} \i\c{F2XM1}: Calculate 2**X-1
\c F2XM1 ; D9 F0 [8086,FPU]
\c{F2XM1} raises 2 to the power of \c{ST0}, subtracts one, and
stores the result back into \c{ST0}. The initial contents of \c{ST0}
must be a number in the range -1.0 to +1.0.
\S{insFABS} \i\c{FABS}: Floating-Point Absolute Value
\c FABS ; D9 E1 [8086,FPU]
\c{FABS} computes the absolute value of \c{ST0},by clearing the sign
bit, and stores the result back in \c{ST0}.
\S{insFADD} \i\c{FADD}, \i\c{FADDP}: Floating-Point Addition
\c FADD mem32 ; D8 /0 [8086,FPU]
\c FADD mem64 ; DC /0 [8086,FPU]
\c FADD fpureg ; D8 C0+r [8086,FPU]
\c FADD ST0,fpureg ; D8 C0+r [8086,FPU]
\c FADD TO fpureg ; DC C0+r [8086,FPU]
\c FADD fpureg,ST0 ; DC C0+r [8086,FPU]
\c FADDP fpureg ; DE C0+r [8086,FPU]
\c FADDP fpureg,ST0 ; DE C0+r [8086,FPU]
\b \c{FADD}, given one operand, adds the operand to \c{ST0} and stores
the result back in \c{ST0}. If the operand has the \c{TO} modifier,
the result is stored in the register given rather than in \c{ST0}.
\b \c{FADDP} performs the same function as \c{FADD TO}, but pops the
register stack after storing the result.
The given two-operand forms are synonyms for the one-operand forms.
To add an integer value to \c{ST0}, use the c{FIADD} instruction
(\k{insFIADD})
\S{insFBLD} \i\c{FBLD}, \i\c{FBSTP}: BCD Floating-Point Load and Store
\c FBLD mem80 ; DF /4 [8086,FPU]
\c FBSTP mem80 ; DF /6 [8086,FPU]
\c{FBLD} loads an 80-bit (ten-byte) packed binary-coded decimal
number from the given memory address, converts it to a real, and
pushes it on the register stack. \c{FBSTP} stores the value of
\c{ST0}, in packed BCD, at the given address and then pops the
register stack.
\S{insFCHS} \i\c{FCHS}: Floating-Point Change Sign
\c FCHS ; D9 E0 [8086,FPU]
\c{FCHS} negates the number in \c{ST0}, by inverting the sign bit:
negative numbers become positive, and vice versa.
\S{insFCLEX} \i\c{FCLEX}, \c{FNCLEX}: Clear Floating-Point Exceptions
\c FCLEX ; 9B DB E2 [8086,FPU]
\c FNCLEX ; DB E2 [8086,FPU]
\c{FCLEX} clears any floating-point exceptions which may be pending.
\c{FNCLEX} does the same thing but doesn't wait for previous
floating-point operations (including the \e{handling} of pending
exceptions) to finish first.
\S{insFCMOVB} \i\c{FCMOVcc}: Floating-Point Conditional Move
\c FCMOVB fpureg ; DA C0+r [P6,FPU]
\c FCMOVB ST0,fpureg ; DA C0+r [P6,FPU]
\c FCMOVE fpureg ; DA C8+r [P6,FPU]
\c FCMOVE ST0,fpureg ; DA C8+r [P6,FPU]
\c FCMOVBE fpureg ; DA D0+r [P6,FPU]
\c FCMOVBE ST0,fpureg ; DA D0+r [P6,FPU]
\c FCMOVU fpureg ; DA D8+r [P6,FPU]
\c FCMOVU ST0,fpureg ; DA D8+r [P6,FPU]
\c FCMOVNB fpureg ; DB C0+r [P6,FPU]
\c FCMOVNB ST0,fpureg ; DB C0+r [P6,FPU]
\c FCMOVNE fpureg ; DB C8+r [P6,FPU]
\c FCMOVNE ST0,fpureg ; DB C8+r [P6,FPU]
\c FCMOVNBE fpureg ; DB D0+r [P6,FPU]
\c FCMOVNBE ST0,fpureg ; DB D0+r [P6,FPU]
\c FCMOVNU fpureg ; DB D8+r [P6,FPU]
\c FCMOVNU ST0,fpureg ; DB D8+r [P6,FPU]
The \c{FCMOV} instructions perform conditional move operations: each
of them moves the contents of the given register into \c{ST0} if its
condition is satisfied, and does nothing if not.
The conditions are not the same as the standard condition codes used
with conditional jump instructions. The conditions \c{B}, \c{BE},
\c{NB}, \c{NBE}, \c{E} and \c{NE} are exactly as normal, but none of
the other standard ones are supported. Instead, the condition \c{U}
and its counterpart \c{NU} are provided; the \c{U} condition is
satisfied if the last two floating-point numbers compared were
\e{unordered}, i.e. they were not equal but neither one could be
said to be greater than the other, for example if they were NaNs.
(The flag state which signals this is the setting of the parity
flag: so the \c{U} condition is notionally equivalent to \c{PE}, and
\c{NU} is equivalent to \c{PO}.)
The \c{FCMOV} conditions test the main processor's status flags, not
the FPU status flags, so using \c{FCMOV} directly after \c{FCOM}
will not work. Instead, you should either use \c{FCOMI} which writes
directly to the main CPU flags word, or use \c{FSTSW} to extract the
FPU flags.
Although the \c{FCMOV} instructions are flagged \c{P6} above, they
may not be supported by all Pentium Pro processors; the \c{CPUID}
instruction (\k{insCPUID}) will return a bit which indicates whether
conditional moves are supported.
\S{insFCOM} \i\c{FCOM}, \i\c{FCOMP}, \i\c{FCOMPP}, \i\c{FCOMI},
\i\c{FCOMIP}: Floating-Point Compare
\c FCOM mem32 ; D8 /2 [8086,FPU]
\c FCOM mem64 ; DC /2 [8086,FPU]
\c FCOM fpureg ; D8 D0+r [8086,FPU]
\c FCOM ST0,fpureg ; D8 D0+r [8086,FPU]
\c FCOMP mem32 ; D8 /3 [8086,FPU]
\c FCOMP mem64 ; DC /3 [8086,FPU]
\c FCOMP fpureg ; D8 D8+r [8086,FPU]
\c FCOMP ST0,fpureg ; D8 D8+r [8086,FPU]
\c FCOMPP ; DE D9 [8086,FPU]
\c FCOMI fpureg ; DB F0+r [P6,FPU]
\c FCOMI ST0,fpureg ; DB F0+r [P6,FPU]
\c FCOMIP fpureg ; DF F0+r [P6,FPU]
\c FCOMIP ST0,fpureg ; DF F0+r [P6,FPU]
\c{FCOM} compares \c{ST0} with the given operand, and sets the FPU
flags accordingly. \c{ST0} is treated as the left-hand side of the
comparison, so that the carry flag is set (for a `less-than' result)
if \c{ST0} is less than the given operand.
\c{FCOMP} does the same as \c{FCOM}, but pops the register stack
afterwards. \c{FCOMPP} compares \c{ST0} with \c{ST1} and then pops
the register stack twice.
\c{FCOMI} and \c{FCOMIP} work like the corresponding forms of
\c{FCOM} and \c{FCOMP}, but write their results directly to the CPU
flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move
instructions.
The \c{FCOM} instructions differ from the \c{FUCOM} instructions
(\k{insFUCOM}) only in the way they handle quiet NaNs: \c{FUCOM}
will handle them silently and set the condition code flags to an
`unordered' result, whereas \c{FCOM} will generate an exception.
\S{insFCOS} \i\c{FCOS}: Cosine
\c FCOS ; D9 FF [386,FPU]
\c{FCOS} computes the cosine of \c{ST0} (in radians), and stores the
result in \c{ST0}. The absolute value of \c{ST0} must be less than 2**63.
See also \c{FSINCOS} (\k{insFSIN}).
\S{insFDECSTP} \i\c{FDECSTP}: Decrement Floating-Point Stack Pointer
\c FDECSTP ; D9 F6 [8086,FPU]
\c{FDECSTP} decrements the `top' field in the floating-point status
word. This has the effect of rotating the FPU register stack by one,
as if the contents of \c{ST7} had been pushed on the stack. See also
\c{FINCSTP} (\k{insFINCSTP}).
\S{insFDISI} \i\c{FxDISI}, \i\c{FxENI}: Disable and Enable Floating-Point Interrupts
\c FDISI ; 9B DB E1 [8086,FPU]
\c FNDISI ; DB E1 [8086,FPU]
\c FENI ; 9B DB E0 [8086,FPU]
\c FNENI ; DB E0 [8086,FPU]
\c{FDISI} and \c{FENI} disable and enable floating-point interrupts.
These instructions are only meaningful on original 8087 processors:
the 287 and above treat them as no-operation instructions.
\c{FNDISI} and \c{FNENI} do the same thing as \c{FDISI} and \c{FENI}
respectively, but without waiting for the floating-point processor
to finish what it was doing first.
\S{insFDIV} \i\c{FDIV}, \i\c{FDIVP}, \i\c{FDIVR}, \i\c{FDIVRP}: Floating-Point Division
\c FDIV mem32 ; D8 /6 [8086,FPU]
\c FDIV mem64 ; DC /6 [8086,FPU]
\c FDIV fpureg ; D8 F0+r [8086,FPU]
\c FDIV ST0,fpureg ; D8 F0+r [8086,FPU]
\c FDIV TO fpureg ; DC F8+r [8086,FPU]
\c FDIV fpureg,ST0 ; DC F8+r [8086,FPU]
\c FDIVR mem32 ; D8 /7 [8086,FPU]
\c FDIVR mem64 ; DC /7 [8086,FPU]
\c FDIVR fpureg ; D8 F8+r [8086,FPU]
\c FDIVR ST0,fpureg ; D8 F8+r [8086,FPU]
\c FDIVR TO fpureg ; DC F0+r [8086,FPU]
\c FDIVR fpureg,ST0 ; DC F0+r [8086,FPU]
\c FDIVP fpureg ; DE F8+r [8086,FPU]
\c FDIVP fpureg,ST0 ; DE F8+r [8086,FPU]
\c FDIVRP fpureg ; DE F0+r [8086,FPU]
\c FDIVRP fpureg,ST0 ; DE F0+r [8086,FPU]
\b \c{FDIV} divides \c{ST0} by the given operand and stores the result
back in \c{ST0}, unless the \c{TO} qualifier is given, in which case
it divides the given operand by \c{ST0} and stores the result in the
operand.
\b \c{FDIVR} does the same thing, but does the division the other way
up: so if \c{TO} is not given, it divides the given operand by
\c{ST0} and stores the result in \c{ST0}, whereas if \c{TO} is given
it divides \c{ST0} by its operand and stores the result in the
operand.
\b \c{FDIVP} operates like \c{FDIV TO}, but pops the register stack
once it has finished.
\b \c{FDIVRP} operates like \c{FDIVR TO}, but pops the register stack
once it has finished.
For FP/Integer divisions, see \c{FIDIV} (\k{insFIDIV}).
\S{insFEMMS} \i\c{FEMMS}: Faster Enter/Exit of the MMX or floating-point state
\c FEMMS ; 0F 0E [PENT,3DNOW]
\c{FEMMS} can be used in place of the \c{EMMS} instruction on
processors which support the 3DNow! instruction set. Following
execution of \c{FEMMS}, the state of the \c{MMX/FP} registers
is undefined, and this allows a faster context switch between
\c{FP} and \c{MMX} instructions. The \c{FEMMS} instruction can
also be used \e{before} executing \c{MMX} instructions
\S{insFFREE} \i\c{FFREE}: Flag Floating-Point Register as Unused
\c FFREE fpureg ; DD C0+r [8086,FPU]
\c FFREEP fpureg ; DF C0+r [286,FPU,UNDOC]
\c{FFREE} marks the given register as being empty.
\c{FFREEP} marks the given register as being empty, and then
pops the register stack.
\S{insFIADD} \i\c{FIADD}: Floating-Point/Integer Addition
\c FIADD mem16 ; DE /0 [8086,FPU]
\c FIADD mem32 ; DA /0 [8086,FPU]
\c{FIADD} adds the 16-bit or 32-bit integer stored in the given
memory location to \c{ST0}, storing the result in \c{ST0}.
\S{insFICOM} \i\c{FICOM}, \i\c{FICOMP}: Floating-Point/Integer Compare
\c FICOM mem16 ; DE /2 [8086,FPU]
\c FICOM mem32 ; DA /2 [8086,FPU]
\c FICOMP mem16 ; DE /3 [8086,FPU]
\c FICOMP mem32 ; DA /3 [8086,FPU]
\c{FICOM} compares \c{ST0} with the 16-bit or 32-bit integer stored
in the given memory location, and sets the FPU flags accordingly.
\c{FICOMP} does the same, but pops the register stack afterwards.
\S{insFIDIV} \i\c{FIDIV}, \i\c{FIDIVR}: Floating-Point/Integer Division
\c FIDIV mem16 ; DE /6 [8086,FPU]
\c FIDIV mem32 ; DA /6 [8086,FPU]
\c FIDIVR mem16 ; DE /7 [8086,FPU]
\c FIDIVR mem32 ; DA /7 [8086,FPU]
\c{FIDIV} divides \c{ST0} by the 16-bit or 32-bit integer stored in
the given memory location, and stores the result in \c{ST0}.
\c{FIDIVR} does the division the other way up: it divides the
integer by \c{ST0}, but still stores the result in \c{ST0}.
\S{insFILD} \i\c{FILD}, \i\c{FIST}, \i\c{FISTP}: Floating-Point/Integer Conversion
\c FILD mem16 ; DF /0 [8086,FPU]
\c FILD mem32 ; DB /0 [8086,FPU]
\c FILD mem64 ; DF /5 [8086,FPU]
\c FIST mem16 ; DF /2 [8086,FPU]
\c FIST mem32 ; DB /2 [8086,FPU]
\c FISTP mem16 ; DF /3 [8086,FPU]
\c FISTP mem32 ; DB /3 [8086,FPU]
\c FISTP mem64 ; DF /7 [8086,FPU]
\c{FILD} loads an integer out of a memory location, converts it to a
real, and pushes it on the FPU register stack. \c{FIST} converts
\c{ST0} to an integer and stores that in memory; \c{FISTP} does the
same as \c{FIST}, but pops the register stack afterwards.
\S{insFIMUL} \i\c{FIMUL}: Floating-Point/Integer Multiplication
\c FIMUL mem16 ; DE /1 [8086,FPU]
\c FIMUL mem32 ; DA /1 [8086,FPU]
\c{FIMUL} multiplies \c{ST0} by the 16-bit or 32-bit integer stored
in the given memory location, and stores the result in \c{ST0}.
\S{insFINCSTP} \i\c{FINCSTP}: Increment Floating-Point Stack Pointer
\c FINCSTP ; D9 F7 [8086,FPU]
\c{FINCSTP} increments the `top' field in the floating-point status
word. This has the effect of rotating the FPU register stack by one,
as if the register stack had been popped; however, unlike the
popping of the stack performed by many FPU instructions, it does not
flag the new \c{ST7} (previously \c{ST0}) as empty. See also
\c{FDECSTP} (\k{insFDECSTP}).
\S{insFINIT} \i\c{FINIT}, \i\c{FNINIT}: initialize Floating-Point Unit
\c FINIT ; 9B DB E3 [8086,FPU]
\c FNINIT ; DB E3 [8086,FPU]
\c{FINIT} initializes the FPU to its default state. It flags all
registers as empty, without actually change their values, clears
the top of stack pointer. \c{FNINIT} does the same, without first
waiting for pending exceptions to clear.
\S{insFISUB} \i\c{FISUB}: Floating-Point/Integer Subtraction
\c FISUB mem16 ; DE /4 [8086,FPU]
\c FISUB mem32 ; DA /4 [8086,FPU]
\c FISUBR mem16 ; DE /5 [8086,FPU]
\c FISUBR mem32 ; DA /5 [8086,FPU]
\c{FISUB} subtracts the 16-bit or 32-bit integer stored in the given
memory location from \c{ST0}, and stores the result in \c{ST0}.
\c{FISUBR} does the subtraction the other way round, i.e. it
subtracts \c{ST0} from the given integer, but still stores the
result in \c{ST0}.
\S{insFLD} \i\c{FLD}: Floating-Point Load
\c FLD mem32 ; D9 /0 [8086,FPU]
\c FLD mem64 ; DD /0 [8086,FPU]
\c FLD mem80 ; DB /5 [8086,FPU]
\c FLD fpureg ; D9 C0+r [8086,FPU]
\c{FLD} loads a floating-point value out of the given register or
memory location, and pushes it on the FPU register stack.
\S{insFLD1} \i\c{FLDxx}: Floating-Point Load Constants
\c FLD1 ; D9 E8 [8086,FPU]
\c FLDL2E ; D9 EA [8086,FPU]
\c FLDL2T ; D9 E9 [8086,FPU]
\c FLDLG2 ; D9 EC [8086,FPU]
\c FLDLN2 ; D9 ED [8086,FPU]
\c FLDPI ; D9 EB [8086,FPU]
\c FLDZ ; D9 EE [8086,FPU]
These instructions push specific standard constants on the FPU
register stack.
\c Instruction Constant pushed
\c FLD1 1
\c FLDL2E base-2 logarithm of e
\c FLDL2T base-2 log of 10
\c FLDLG2 base-10 log of 2
\c FLDLN2 base-e log of 2
\c FLDPI pi
\c FLDZ zero
\S{insFLDCW} \i\c{FLDCW}: Load Floating-Point Control Word
\c FLDCW mem16 ; D9 /5 [8086,FPU]
\c{FLDCW} loads a 16-bit value out of memory and stores it into the
FPU control word (governing things like the rounding mode, the
precision, and the exception masks). See also \c{FSTCW}
(\k{insFSTCW}). If exceptions are enabled and you don't want to
generate one, use \c{FCLEX} or \c{FNCLEX} (\k{insFCLEX}) before
loading the new control word.
\S{insFLDENV} \i\c{FLDENV}: Load Floating-Point Environment
\c FLDENV mem ; D9 /4 [8086,FPU]
\c{FLDENV} loads the FPU operating environment (control word, status
word, tag word, instruction pointer, data pointer and last opcode)
from memory. The memory area is 14 or 28 bytes long, depending on
the CPU mode at the time. See also \c{FSTENV} (\k{insFSTENV}).
\S{insFMUL} \i\c{FMUL}, \i\c{FMULP}: Floating-Point Multiply
\c FMUL mem32 ; D8 /1 [8086,FPU]
\c FMUL mem64 ; DC /1 [8086,FPU]
\c FMUL fpureg ; D8 C8+r [8086,FPU]
\c FMUL ST0,fpureg ; D8 C8+r [8086,FPU]
\c FMUL TO fpureg ; DC C8+r [8086,FPU]
\c FMUL fpureg,ST0 ; DC C8+r [8086,FPU]
\c FMULP fpureg ; DE C8+r [8086,FPU]
\c FMULP fpureg,ST0 ; DE C8+r [8086,FPU]
\c{FMUL} multiplies \c{ST0} by the given operand, and stores the
result in \c{ST0}, unless the \c{TO} qualifier is used in which case
it stores the result in the operand. \c{FMULP} performs the same
operation as \c{FMUL TO}, and then pops the register stack.
\S{insFNOP} \i\c{FNOP}: Floating-Point No Operation
\c FNOP ; D9 D0 [8086,FPU]
\c{FNOP} does nothing.
\S{insFPATAN} \i\c{FPATAN}, \i\c{FPTAN}: Arctangent and Tangent
\c FPATAN ; D9 F3 [8086,FPU]
\c FPTAN ; D9 F2 [8086,FPU]
\c{FPATAN} computes the arctangent, in radians, of the result of
dividing \c{ST1} by \c{ST0}, stores the result in \c{ST1}, and pops
the register stack. It works like the C \c{atan2} function, in that
changing the sign of both \c{ST0} and \c{ST1} changes the output
value by pi (so it performs true rectangular-to-polar coordinate
conversion, with \c{ST1} being the Y coordinate and \c{ST0} being
the X coordinate, not merely an arctangent).
\c{FPTAN} computes the tangent of the value in \c{ST0} (in radians),
and stores the result back into \c{ST0}.
The absolute value of \c{ST0} must be less than 2**63.
\S{insFPREM} \i\c{FPREM}, \i\c{FPREM1}: Floating-Point Partial Remainder
\c FPREM ; D9 F8 [8086,FPU]
\c FPREM1 ; D9 F5 [386,FPU]
These instructions both produce the remainder obtained by dividing
\c{ST0} by \c{ST1}. This is calculated, notionally, by dividing
\c{ST0} by \c{ST1}, rounding the result to an integer, multiplying
by \c{ST1} again, and computing the value which would need to be
added back on to the result to get back to the original value in
\c{ST0}.
The two instructions differ in the way the notional round-to-integer
operation is performed. \c{FPREM} does it by rounding towards zero,
so that the remainder it returns always has the same sign as the
original value in \c{ST0}; \c{FPREM1} does it by rounding to the
nearest integer, so that the remainder always has at most half the
magnitude of \c{ST1}.
Both instructions calculate \e{partial} remainders, meaning that
they may not manage to provide the final result, but might leave
intermediate results in \c{ST0} instead. If this happens, they will
set the C2 flag in the FPU status word; therefore, to calculate a
remainder, you should repeatedly execute \c{FPREM} or \c{FPREM1}
until C2 becomes clear.
\S{insFRNDINT} \i\c{FRNDINT}: Floating-Point Round to Integer
\c FRNDINT ; D9 FC [8086,FPU]
\c{FRNDINT} rounds the contents of \c{ST0} to an integer, according
to the current rounding mode set in the FPU control word, and stores
the result back in \c{ST0}.
\S{insFRSTOR} \i\c{FSAVE}, \i\c{FRSTOR}: Save/Restore Floating-Point State
\c FSAVE mem ; 9B DD /6 [8086,FPU]
\c FNSAVE mem ; DD /6 [8086,FPU]
\c FRSTOR mem ; DD /4 [8086,FPU]
\c{FSAVE} saves the entire floating-point unit state, including all
the information saved by \c{FSTENV} (\k{insFSTENV}) plus the
contents of all the registers, to a 94 or 108 byte area of memory
(depending on the CPU mode). \c{FRSTOR} restores the floating-point
state from the same area of memory.
\c{FNSAVE} does the same as \c{FSAVE}, without first waiting for
pending floating-point exceptions to clear.
\S{insFSCALE} \i\c{FSCALE}: Scale Floating-Point Value by Power of Two
\c FSCALE ; D9 FD [8086,FPU]
\c{FSCALE} scales a number by a power of two: it rounds \c{ST1}
towards zero to obtain an integer, then multiplies \c{ST0} by two to
the power of that integer, and stores the result in \c{ST0}.
\S{insFSETPM} \i\c{FSETPM}: Set Protected Mode
\c FSETPM ; DB E4 [286,FPU]
This instruction initializes protected mode on the 287 floating-point
coprocessor. It is only meaningful on that processor: the 387 and
above treat the instruction as a no-operation.
\S{insFSIN} \i\c{FSIN}, \i\c{FSINCOS}: Sine and Cosine
\c FSIN ; D9 FE [386,FPU]
\c FSINCOS ; D9 FB [386,FPU]
\c{FSIN} calculates the sine of \c{ST0} (in radians) and stores the
result in \c{ST0}. \c{FSINCOS} does the same, but then pushes the
cosine of the same value on the register stack, so that the sine
ends up in \c{ST1} and the cosine in \c{ST0}. \c{FSINCOS} is faster
than executing \c{FSIN} and \c{FCOS} (see \k{insFCOS}) in succession.
The absolute value of \c{ST0} must be less than 2**63.
\S{insFSQRT} \i\c{FSQRT}: Floating-Point Square Root
\c FSQRT ; D9 FA [8086,FPU]
\c{FSQRT} calculates the square root of \c{ST0} and stores the
result in \c{ST0}.
\S{insFST} \i\c{FST}, \i\c{FSTP}: Floating-Point Store
\c FST mem32 ; D9 /2 [8086,FPU]
\c FST mem64 ; DD /2 [8086,FPU]
\c FST fpureg ; DD D0+r [8086,FPU]
\c FSTP mem32 ; D9 /3 [8086,FPU]
\c FSTP mem64 ; DD /3 [8086,FPU]
\c FSTP mem80 ; DB /7 [8086,FPU]
\c FSTP fpureg ; DD D8+r [8086,FPU]
\c{FST} stores the value in \c{ST0} into the given memory location
or other FPU register. \c{FSTP} does the same, but then pops the
register stack.
\S{insFSTCW} \i\c{FSTCW}: Store Floating-Point Control Word
\c FSTCW mem16 ; 9B D9 /7 [8086,FPU]
\c FNSTCW mem16 ; D9 /7 [8086,FPU]
\c{FSTCW} stores the \c{FPU} control word (governing things like the
rounding mode, the precision, and the exception masks) into a 2-byte
memory area. See also \c{FLDCW} (\k{insFLDCW}).
\c{FNSTCW} does the same thing as \c{FSTCW}, without first waiting
for pending floating-point exceptions to clear.
\S{insFSTENV} \i\c{FSTENV}: Store Floating-Point Environment
\c FSTENV mem ; 9B D9 /6 [8086,FPU]
\c FNSTENV mem ; D9 /6 [8086,FPU]
\c{FSTENV} stores the \c{FPU} operating environment (control word,
status word, tag word, instruction pointer, data pointer and last
opcode) into memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See also \c{FLDENV}
(\k{insFLDENV}).
\c{FNSTENV} does the same thing as \c{FSTENV}, without first waiting
for pending floating-point exceptions to clear.
\S{insFSTSW} \i\c{FSTSW}: Store Floating-Point Status Word
\c FSTSW mem16 ; 9B DD /7 [8086,FPU]
\c FSTSW AX ; 9B DF E0 [286,FPU]
\c FNSTSW mem16 ; DD /7 [8086,FPU]
\c FNSTSW AX ; DF E0 [286,FPU]
\c{FSTSW} stores the \c{FPU} status word into \c{AX} or into a 2-byte
memory area.
\c{FNSTSW} does the same thing as \c{FSTSW}, without first waiting
for pending floating-point exceptions to clear.
\S{insFSUB} \i\c{FSUB}, \i\c{FSUBP}, \i\c{FSUBR}, \i\c{FSUBRP}: Floating-Point Subtract
\c FSUB mem32 ; D8 /4 [8086,FPU]
\c FSUB mem64 ; DC /4 [8086,FPU]
\c FSUB fpureg ; D8 E0+r [8086,FPU]
\c FSUB ST0,fpureg ; D8 E0+r [8086,FPU]
\c FSUB TO fpureg ; DC E8+r [8086,FPU]
\c FSUB fpureg,ST0 ; DC E8+r [8086,FPU]
\c FSUBR mem32 ; D8 /5 [8086,FPU]
\c FSUBR mem64 ; DC /5 [8086,FPU]
\c FSUBR fpureg ; D8 E8+r [8086,FPU]
\c FSUBR ST0,fpureg ; D8 E8+r [8086,FPU]
\c FSUBR TO fpureg ; DC E0+r [8086,FPU]
\c FSUBR fpureg,ST0 ; DC E0+r [8086,FPU]
\c FSUBP fpureg ; DE E8+r [8086,FPU]
\c FSUBP fpureg,ST0 ; DE E8+r [8086,FPU]
\c FSUBRP fpureg ; DE E0+r [8086,FPU]
\c FSUBRP fpureg,ST0 ; DE E0+r [8086,FPU]
\b \c{FSUB} subtracts the given operand from \c{ST0} and stores the
result back in \c{ST0}, unless the \c{TO} qualifier is given, in
which case it subtracts \c{ST0} from the given operand and stores
the result in the operand.
\b \c{FSUBR} does the same thing, but does the subtraction the other
way up: so if \c{TO} is not given, it subtracts \c{ST0} from the given
operand and stores the result in \c{ST0}, whereas if \c{TO} is given
it subtracts its operand from \c{ST0} and stores the result in the
operand.
\b \c{FSUBP} operates like \c{FSUB TO}, but pops the register stack
once it has finished.
\b \c{FSUBRP} operates like \c{FSUBR TO}, but pops the register stack
once it has finished.
\S{insFTST} \i\c{FTST}: Test \c{ST0} Against Zero
\c FTST ; D9 E4 [8086,FPU]
\c{FTST} compares \c{ST0} with zero and sets the FPU flags
accordingly. \c{ST0} is treated as the left-hand side of the
comparison, so that a `less-than' result is generated if \c{ST0} is
negative.
\S{insFUCOM} \i\c{FUCOMxx}: Floating-Point Unordered Compare
\c FUCOM fpureg ; DD E0+r [386,FPU]
\c FUCOM ST0,fpureg ; DD E0+r [386,FPU]
\c FUCOMP fpureg ; DD E8+r [386,FPU]
\c FUCOMP ST0,fpureg ; DD E8+r [386,FPU]
\c FUCOMPP ; DA E9 [386,FPU]
\c FUCOMI fpureg ; DB E8+r [P6,FPU]
\c FUCOMI ST0,fpureg ; DB E8+r [P6,FPU]
\c FUCOMIP fpureg ; DF E8+r [P6,FPU]
\c FUCOMIP ST0,fpureg ; DF E8+r [P6,FPU]
\b \c{FUCOM} compares \c{ST0} with the given operand, and sets the
FPU flags accordingly. \c{ST0} is treated as the left-hand side of
the comparison, so that the carry flag is set (for a `less-than'
result) if \c{ST0} is less than the given operand.
\b \c{FUCOMP} does the same as \c{FUCOM}, but pops the register stack
afterwards. \c{FUCOMPP} compares \c{ST0} with \c{ST1} and then pops
the register stack twice.
\b \c{FUCOMI} and \c{FUCOMIP} work like the corresponding forms of
\c{FUCOM} and \c{FUCOMP}, but write their results directly to the CPU
flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move
instructions.
The \c{FUCOM} instructions differ from the \c{FCOM} instructions
(\k{insFCOM}) only in the way they handle quiet NaNs: \c{FUCOM} will
handle them silently and set the condition code flags to an
`unordered' result, whereas \c{FCOM} will generate an exception.
\S{insFXAM} \i\c{FXAM}: Examine Class of Value in \c{ST0}
\c FXAM ; D9 E5 [8086,FPU]
\c{FXAM} sets the FPU flags \c{C3}, \c{C2} and \c{C0} depending on
the type of value stored in \c{ST0}:
\c Register contents Flags
\c Unsupported format 000
\c NaN 001
\c Finite number 010
\c Infinity 011
\c Zero 100
\c Empty register 101
\c Denormal 110
Additionally, the \c{C1} flag is set to the sign of the number.
\S{insFXCH} \i\c{FXCH}: Floating-Point Exchange
\c FXCH ; D9 C9 [8086,FPU]
\c FXCH fpureg ; D9 C8+r [8086,FPU]
\c FXCH fpureg,ST0 ; D9 C8+r [8086,FPU]
\c FXCH ST0,fpureg ; D9 C8+r [8086,FPU]
\c{FXCH} exchanges \c{ST0} with a given FPU register. The no-operand
form exchanges \c{ST0} with \c{ST1}.
\S{insFXRSTOR} \i\c{FXRSTOR}: Restore \c{FP}, \c{MMX} and \c{SSE} State
\c FXRSTOR memory ; 0F AE /1 [P6,SSE,FPU]
The \c{FXRSTOR} instruction reloads the \c{FPU}, \c{MMX} and \c{SSE}
state (environment and registers), from the 512 byte memory area defined
by the source operand. This data should have been written by a previous
\c{FXSAVE}.
\S{insFXSAVE} \i\c{FXSAVE}: Store \c{FP}, \c{MMX} and \c{SSE} State
\c FXSAVE memory ; 0F AE /0 [P6,SSE,FPU]
\c{FXSAVE}The FXSAVE instruction writes the current \c{FPU}, \c{MMX}
and \c{SSE} technology states (environment and registers), to the
512 byte memory area defined by the destination operand. It does this
without checking for pending unmasked floating-point exceptions
(similar to the operation of \c{FNSAVE}).
Unlike the \c{FSAVE/FNSAVE} instructions, the processor retains the
contents of the \c{FPU}, \c{MMX} and \c{SSE} state in the processor
after the state has been saved. This instruction has been optimized
to maximize floating-point save performance.
\S{insFXTRACT} \i\c{FXTRACT}: Extract Exponent and Significand
\c FXTRACT ; D9 F4 [8086,FPU]
\c{FXTRACT} separates the number in \c{ST0} into its exponent and
significand (mantissa), stores the exponent back into \c{ST0}, and
then pushes the significand on the register stack (so that the
significand ends up in \c{ST0}, and the exponent in \c{ST1}).
\S{insFYL2X} \i\c{FYL2X}, \i\c{FYL2XP1}: Compute Y times Log2(X) or Log2(X+1)
\c FYL2X ; D9 F1 [8086,FPU]
\c FYL2XP1 ; D9 F9 [8086,FPU]
\c{FYL2X} multiplies \c{ST1} by the base-2 logarithm of \c{ST0},
stores the result in \c{ST1}, and pops the register stack (so that
the result ends up in \c{ST0}). \c{ST0} must be non-zero and
positive.
\c{FYL2XP1} works the same way, but replacing the base-2 log of
\c{ST0} with that of \c{ST0} plus one. This time, \c{ST0} must have
magnitude no greater than 1 minus half the square root of two.
\S{insHLT} \i\c{HLT}: Halt Processor
\c HLT ; F4 [8086,PRIV]
\c{HLT} puts the processor into a halted state, where it will
perform no more operations until restarted by an interrupt or a
reset.
On the 286 and later processors, this is a privileged instruction.
\S{insIBTS} \i\c{IBTS}: Insert Bit String
\c IBTS r/m16,reg16 ; o16 0F A7 /r [386,UNDOC]
\c IBTS r/m32,reg32 ; o32 0F A7 /r [386,UNDOC]
The implied operation of this instruction is:
\c IBTS r/m16,AX,CL,reg16
\c IBTS r/m32,EAX,CL,reg32
Writes a bit string from the source operand to the destination.
\c{CL} indicates the number of bits to be copied, from the low bits
of the source. \c{(E)AX} indicates the low order bit offset in the
destination that is written to. For example, if \c{CL} is set to 4
and \c{AX} (for 16-bit code) is set to 5, bits 0-3 of \c{src} will
be copied to bits 5-8 of \c{dst}. This instruction is very poorly
documented, and I have been unable to find any official source of
documentation on it.
\c{IBTS} is supported only on the early Intel 386s, and conflicts
with the opcodes for \c{CMPXCHG486} (on early Intel 486s). NASM
supports it only for completeness. Its counterpart is \c{XBTS}
(see \k{insXBTS}).
\S{insIDIV} \i\c{IDIV}: Signed Integer Divide
\c IDIV r/m8 ; F6 /7 [8086]
\c IDIV r/m16 ; o16 F7 /7 [8086]
\c IDIV r/m32 ; o32 F7 /7 [386]
\c{IDIV} performs signed integer division. The explicit operand
provided is the divisor; the dividend and destination operands
are implicit, in the following way:
\b For \c{IDIV r/m8}, \c{AX} is divided by the given operand;
the quotient is stored in \c{AL} and the remainder in \c{AH}.
\b For \c{IDIV r/m16}, \c{DX:AX} is divided by the given operand;
the quotient is stored in \c{AX} and the remainder in \c{DX}.
\b For \c{IDIV r/m32}, \c{EDX:EAX} is divided by the given operand;
the quotient is stored in \c{EAX} and the remainder in \c{EDX}.
Unsigned integer division is performed by the \c{DIV} instruction:
see \k{insDIV}.
\S{insIMUL} \i\c{IMUL}: Signed Integer Multiply
\c IMUL r/m8 ; F6 /5 [8086]
\c IMUL r/m16 ; o16 F7 /5 [8086]
\c IMUL r/m32 ; o32 F7 /5 [386]
\c IMUL reg16,r/m16 ; o16 0F AF /r [386]
\c IMUL reg32,r/m32 ; o32 0F AF /r [386]
\c IMUL reg16,imm8 ; o16 6B /r ib [186]
\c IMUL reg16,imm16 ; o16 69 /r iw [186]
\c IMUL reg32,imm8 ; o32 6B /r ib [386]
\c IMUL reg32,imm32 ; o32 69 /r id [386]
\c IMUL reg16,r/m16,imm8 ; o16 6B /r ib [186]
\c IMUL reg16,r/m16,imm16 ; o16 69 /r iw [186]
\c IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
\c IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]
\c{IMUL} performs signed integer multiplication. For the
single-operand form, the other operand and destination are
implicit, in the following way:
\b For \c{IMUL r/m8}, \c{AL} is multiplied by the given operand;
the product is stored in \c{AX}.
\b For \c{IMUL r/m16}, \c{AX} is multiplied by the given operand;
the product is stored in \c{DX:AX}.
\b For \c{IMUL r/m32}, \c{EAX} is multiplied by the given operand;
the product is stored in \c{EDX:EAX}.
The two-operand form multiplies its two operands and stores the
result in the destination (first) operand. The three-operand
form multiplies its last two operands and stores the result in
the first operand.
The two-operand form with an immediate second operand is in
fact a shorthand for the three-operand form, as can be seen by
examining the opcode descriptions: in the two-operand form, the
code \c{/r} takes both its register and \c{r/m} parts from the
same operand (the first one).
In the forms with an 8-bit immediate operand and another longer
source operand, the immediate operand is considered to be signed,
and is sign-extended to the length of the other source operand.
In these cases, the \c{BYTE} qualifier is necessary to force
NASM to generate this form of the instruction.
Unsigned integer multiplication is performed by the \c{MUL}
instruction: see \k{insMUL}.
\S{insIN} \i\c{IN}: Input from I/O Port
\c IN AL,imm8 ; E4 ib [8086]
\c IN AX,imm8 ; o16 E5 ib [8086]
\c IN EAX,imm8 ; o32 E5 ib [386]
\c IN AL,DX ; EC [8086]
\c IN AX,DX ; o16 ED [8086]
\c IN EAX,DX ; o32 ED [386]
\c{IN} reads a byte, word or doubleword from the specified I/O port,
and stores it in the given destination register. The port number may
be specified as an immediate value if it is between 0 and 255, and
otherwise must be stored in \c{DX}. See also \c{OUT} (\k{insOUT}).
\S{insINC} \i\c{INC}: Increment Integer
\c INC reg16 ; o16 40+r [8086]
\c INC reg32 ; o32 40+r [386]
\c INC r/m8 ; FE /0 [8086]
\c INC r/m16 ; o16 FF /0 [8086]
\c INC r/m32 ; o32 FF /0 [386]
\c{INC} adds 1 to its operand. It does \e{not} affect the carry
flag: to affect the carry flag, use \c{ADD something,1} (see
\k{insADD}). \c{INC} affects all the other flags according to the result.
This instruction can be used with a \c{LOCK} prefix to allow atomic execution.
See also \c{DEC} (\k{insDEC}).
\S{insINSB} \i\c{INSB}, \i\c{INSW}, \i\c{INSD}: Input String from I/O Port
\c INSB ; 6C [186]
\c INSW ; o16 6D [186]
\c INSD ; o32 6D [386]
\c{INSB} inputs a byte from the I/O port specified in \c{DX} and
stores it at \c{[ES:DI]} or \c{[ES:EDI]}. It then increments or
decrements (depending on the direction flag: increments if the flag
is clear, decrements if it is set) \c{DI} or \c{EDI}.
The register used is \c{DI} if the address size is 16 bits, and
\c{EDI} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
Segment override prefixes have no effect for this instruction: the
use of \c{ES} for the load from \c{[DI]} or \c{[EDI]} cannot be
overridden.
\c{INSW} and \c{INSD} work in the same way, but they input a word or
a doubleword instead of a byte, and increment or decrement the
addressing register by 2 or 4 instead of 1.
The \c{REP} prefix may be used to repeat the instruction \c{CX} (or
\c{ECX} - again, the address size chooses which) times.
See also \c{OUTSB}, \c{OUTSW} and \c{OUTSD} (\k{insOUTSB}).
\S{insINT} \i\c{INT}: Software Interrupt
\c INT imm8 ; CD ib [8086]
\c{INT} causes a software interrupt through a specified vector
number from 0 to 255.
The code generated by the \c{INT} instruction is always two bytes
long: although there are short forms for some \c{INT} instructions,
NASM does not generate them when it sees the \c{INT} mnemonic. In
order to generate single-byte breakpoint instructions, use the
\c{INT3} or \c{INT1} instructions (see \k{insINT1}) instead.
\S{insINT1} \i\c{INT3}, \i\c{INT1}, \i\c{ICEBP}, \i\c{INT01}: Breakpoints
\c INT1 ; F1 [P6]
\c ICEBP ; F1 [P6]
\c INT01 ; F1 [P6]
\c INT3 ; CC [8086]
\c INT03 ; CC [8086]
\c{INT1} and \c{INT3} are short one-byte forms of the instructions
\c{INT 1} and \c{INT 3} (see \k{insINT}). They perform a similar
function to their longer counterparts, but take up less code space.
They are used as breakpoints by debuggers.
\b \c{INT1}, and its alternative synonyms \c{INT01} and \c{ICEBP}, is
an instruction used by in-circuit emulators (ICEs). It is present,
though not documented, on some processors down to the 286, but is
only documented for the Pentium Pro. \c{INT3} is the instruction
normally used as a breakpoint by debuggers.
\b \c{INT3}, and its synonym \c{INT03}, is not precisely equivalent to
\c{INT 3}: the short form, since it is designed to be used as a
breakpoint, bypasses the normal \c{IOPL} checks in virtual-8086 mode,
and also does not go through interrupt redirection.
\S{insINTO} \i\c{INTO}: Interrupt if Overflow
\c INTO ; CE [8086]
\c{INTO} performs an \c{INT 4} software interrupt (see \k{insINT})
if and only if the overflow flag is set.
\S{insINVD} \i\c{INVD}: Invalidate Internal Caches
\c INVD ; 0F 08 [486]
\c{INVD} invalidates and empties the processor's internal caches,
and causes the processor to instruct external caches to do the same.
It does not write the contents of the caches back to memory first:
any modified data held in the caches will be lost. To write the data
back first, use \c{WBINVD} (\k{insWBINVD}).
\S{insINVLPG} \i\c{INVLPG}: Invalidate TLB Entry
\c INVLPG mem ; 0F 01 /7 [486]
\c{INVLPG} invalidates the translation lookahead buffer (TLB) entry
associated with the supplied memory address.
\S{insIRET} \i\c{IRET}, \i\c{IRETW}, \i\c{IRETD}: Return from Interrupt
\c IRET ; CF [8086]
\c IRETW ; o16 CF [8086]
\c IRETD ; o32 CF [386]
\c{IRET} returns from an interrupt (hardware or software) by means
of popping \c{IP} (or \c{EIP}), \c{CS} and the flags off the stack
and then continuing execution from the new \c{CS:IP}.
\c{IRETW} pops \c{IP}, \c{CS} and the flags as 2 bytes each, taking
6 bytes off the stack in total. \c{IRETD} pops \c{EIP} as 4 bytes,
pops a further 4 bytes of which the top two are discarded and the
bottom two go into \c{CS}, and pops the flags as 4 bytes as well,
taking 12 bytes off the stack.
\c{IRET} is a shorthand for either \c{IRETW} or \c{IRETD}, depending
on the default \c{BITS} setting at the time.
\S{insJcc} \i\c{Jcc}: Conditional Branch
\c Jcc imm ; 70+cc rb [8086]
\c Jcc NEAR imm ; 0F 80+cc rw/rd [386]
The \i{conditional jump} instructions execute a near (same segment)
jump if and only if their conditions are satisfied. For example,
\c{JNZ} jumps only if the zero flag is not set.
The ordinary form of the instructions has only a 128-byte range; the
\c{NEAR} form is a 386 extension to the instruction set, and can
span the full size of a segment. NASM will not override your choice
of jump instruction: if you want \c{Jcc NEAR}, you have to use the
\c{NEAR} keyword.
The \c{SHORT} keyword is allowed on the first form of the
instruction, for clarity, but is not necessary.
For details of the condition codes, see \k{iref-cc}.
\S{insJCXZ} \i\c{JCXZ}, \i\c{JECXZ}: Jump if CX/ECX Zero
\c JCXZ imm ; a16 E3 rb [8086]
\c JECXZ imm ; a32 E3 rb [386]
\c{JCXZ} performs a short jump (with maximum range 128 bytes) if and
only if the contents of the \c{CX} register is 0. \c{JECXZ} does the
same thing, but with \c{ECX}.
\S{insJMP} \i\c{JMP}: Jump
\c JMP imm ; E9 rw/rd [8086]
\c JMP SHORT imm ; EB rb [8086]
\c JMP imm:imm16 ; o16 EA iw iw [8086]
\c JMP imm:imm32 ; o32 EA id iw [386]
\c JMP FAR mem ; o16 FF /5 [8086]
\c JMP FAR mem32 ; o32 FF /5 [386]
\c JMP r/m16 ; o16 FF /4 [8086]
\c JMP r/m32 ; o32 FF /4 [386]
\c{JMP} jumps to a given address. The address may be specified as an
absolute segment and offset, or as a relative jump within the
current segment.
\c{JMP SHORT imm} has a maximum range of 128 bytes, since the
displacement is specified as only 8 bits, but takes up less code
space. NASM does not choose when to generate \c{JMP SHORT} for you:
you must explicitly code \c{SHORT} every time you want a short jump.
You can choose between the two immediate \i{far jump} forms (\c{JMP
imm:imm}) by the use of the \c{WORD} and \c{DWORD} keywords: \c{JMP
WORD 0x1234:0x5678}) or \c{JMP DWORD 0x1234:0x56789abc}.
The \c{JMP FAR mem} forms execute a far jump by loading the
destination address out of memory. The address loaded consists of 16
or 32 bits of offset (depending on the operand size), and 16 bits of
segment. The operand size may be overridden using \c{JMP WORD FAR
mem} or \c{JMP DWORD FAR mem}.
The \c{JMP r/m} forms execute a \i{near jump} (within the same
segment), loading the destination address out of memory or out of a
register. The keyword \c{NEAR} may be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be
overridden using \c{JMP WORD mem} or \c{JMP DWORD mem}.
As a convenience, NASM does not require you to jump to a far symbol
by coding the cumbersome \c{JMP SEG routine:routine}, but instead
allows the easier synonym \c{JMP FAR routine}.
The \c{JMP r/m} forms given above are near calls; NASM will accept
the \c{NEAR} keyword (e.g. \c{JMP NEAR [address]}), even though it
is not strictly necessary.
\S{insLAHF} \i\c{LAHF}: Load AH from Flags
\c LAHF ; 9F [8086]
\c{LAHF} sets the \c{AH} register according to the contents of the
low byte of the flags word.
The operation of \c{LAHF} is:
\c AH <-- SF:ZF:0:AF:0:PF:1:CF
See also \c{SAHF} (\k{insSAHF}).
\S{insLAR} \i\c{LAR}: Load Access Rights
\c LAR reg16,r/m16 ; o16 0F 02 /r [286,PRIV]
\c LAR reg32,r/m32 ; o32 0F 02 /r [286,PRIV]
\c{LAR} takes the segment selector specified by its source (second)
operand, finds the corresponding segment descriptor in the GDT or
LDT, and loads the access-rights byte of the descriptor into its
destination (first) operand.
\S{insLDMXCSR} \i\c{LDMXCSR}: Load Streaming SIMD Extension
Control/Status
\c LDMXCSR mem32 ; 0F AE /2 [KATMAI,SSE]
\c{LDMXCSR} loads 32-bits of data from the specified memory location
into the \c{MXCSR} control/status register. \c{MXCSR} is used to
enable masked/unmasked exception handling, to set rounding modes,
to set flush-to-zero mode, and to view exception status flags.
For details of the \c{MXCSR} register, see the Intel processor docs.
See also \c{STMXCSR} (\k{insSTMXCSR}
\S{insLDS} \i\c{LDS}, \i\c{LES}, \i\c{LFS}, \i\c{LGS}, \i\c{LSS}: Load Far Pointer
\c LDS reg16,mem ; o16 C5 /r [8086]
\c LDS reg32,mem ; o32 C5 /r [386]
\c LES reg16,mem ; o16 C4 /r [8086]
\c LES reg32,mem ; o32 C4 /r [386]
\c LFS reg16,mem ; o16 0F B4 /r [386]
\c LFS reg32,mem ; o32 0F B4 /r [386]
\c LGS reg16,mem ; o16 0F B5 /r [386]
\c LGS reg32,mem ; o32 0F B5 /r [386]
\c LSS reg16,mem ; o16 0F B2 /r [386]
\c LSS reg32,mem ; o32 0F B2 /r [386]
These instructions load an entire far pointer (16 or 32 bits of
offset, plus 16 bits of segment) out of memory in one go. \c{LDS},
for example, loads 16 or 32 bits from the given memory address into
the given register (depending on the size of the register), then
loads the \e{next} 16 bits from memory into \c{DS}. \c{LES},
\c{LFS}, \c{LGS} and \c{LSS} work in the same way but use the other
segment registers.
\S{insLEA} \i\c{LEA}: Load Effective Address
\c LEA reg16,mem ; o16 8D /r [8086]
\c LEA reg32,mem ; o32 8D /r [386]
\c{LEA}, despite its syntax, does not access memory. It calculates
the effective address specified by its second operand as if it were
going to load or store data from it, but instead it stores the
calculated address into the register specified by its first operand.
This can be used to perform quite complex calculations (e.g. \c{LEA
EAX,[EBX+ECX*4+100]}) in one instruction.
\c{LEA}, despite being a purely arithmetic instruction which
accesses no memory, still requires square brackets around its second
operand, as if it were a memory reference.
The size of the calculation is the current \e{address} size, and the
size that the result is stored as is the current \e{operand} size.
If the address and operand size are not the same, then if the
addressing mode was 32-bits, the low 16-bits are stored, and if the
address was 16-bits, it is zero-extended to 32-bits before storing.
\S{insLEAVE} \i\c{LEAVE}: Destroy Stack Frame
\c LEAVE ; C9 [186]
\c{LEAVE} destroys a stack frame of the form created by the
\c{ENTER} instruction (see \k{insENTER}). It is functionally
equivalent to \c{MOV ESP,EBP} followed by \c{POP EBP} (or \c{MOV
SP,BP} followed by \c{POP BP} in 16-bit mode).
\S{insLFENCE} \i\c{LFENCE}: Load Fence
\c LFENCE ; 0F AE /5 [WILLAMETTE,SSE2]
\c{LFENCE} performs a serialising operation on all loads from memory
that were issued before the \c{LFENCE} instruction. This guarantees that
all memory reads before the \c{LFENCE} instruction are visible before any
reads after the \c{LFENCE} instruction.
\c{LFENCE} is ordered respective to other \c{LFENCE} instruction, \c{MFENCE},
any memory read and any other serialising instruction (such as \c{CPUID}).
Weakly ordered memory types can be used to achieve higher processor
performance through such techniques as out-of-order issue and
speculative reads. The degree to which a consumer of data recognizes
or knows that the data is weakly ordered varies among applications
and may be unknown to the producer of this data. The \c{LFENCE}
instruction provides a performance-efficient way of ensuring load
ordering between routines that produce weakly-ordered results and
routines that consume that data.
\c{LFENCE} uses the following ModRM encoding:
\c Mod (7:6) = 11B
\c Reg/Opcode (5:3) = 101B
\c R/M (2:0) = 000B
All other ModRM encodings are defined to be reserved, and use
of these encodings risks incompatibility with future processors.
See also \c{SFENCE} (\k{insSFENCE}) and \c{MFENCE} (\k{insMFENCE}).
\S{insLGDT} \i\c{LGDT}, \i\c{LIDT}, \i\c{LLDT}: Load Descriptor Tables
\c LGDT mem ; 0F 01 /2 [286,PRIV]
\c LIDT mem ; 0F 01 /3 [286,PRIV]
\c LLDT r/m16 ; 0F 00 /2 [286,PRIV]
\c{LGDT} and \c{LIDT} both take a 6-byte memory area as an operand:
they load a 16-bit size limit and a 32-bit linear address from that
area (in the opposite order) into the \c{GDTR} (global descriptor table
register) or \c{IDTR} (interrupt descriptor table register). These are
the only instructions which directly use \e{linear} addresses, rather
than segment/offset pairs.
\c{LLDT} takes a segment selector as an operand. The processor looks
up that selector in the GDT and stores the limit and base address
given there into the \c{LDTR} (local descriptor table register).
See also \c{SGDT}, \c{SIDT} and \c{SLDT} (\k{insSGDT}).
\S{insLMSW} \i\c{LMSW}: Load/Store Machine Status Word
\c LMSW r/m16 ; 0F 01 /6 [286,PRIV]
\c{LMSW} loads the bottom four bits of the source operand into the
bottom four bits of the \c{CR0} control register (or the Machine
Status Word, on 286 processors). See also \c{SMSW} (\k{insSMSW}).
\S{insLOADALL} \i\c{LOADALL}, \i\c{LOADALL286}: Load Processor State
\c LOADALL ; 0F 07 [386,UNDOC]
\c LOADALL286 ; 0F 05 [286,UNDOC]
This instruction, in its two different-opcode forms, is apparently
supported on most 286 processors, some 386 and possibly some 486.
The opcode differs between the 286 and the 386.
The function of the instruction is to load all information relating
to the state of the processor out of a block of memory: on the 286,
this block is located implicitly at absolute address \c{0x800}, and
on the 386 and 486 it is at \c{[ES:EDI]}.
\S{insLODSB} \i\c{LODSB}, \i\c{LODSW}, \i\c{LODSD}: Load from String
\c LODSB ; AC [8086]
\c LODSW ; o16 AD [8086]
\c LODSD ; o32 AD [386]
\c{LODSB} loads a byte from \c{[DS:SI]} or \c{[DS:ESI]} into \c{AL}.
It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is set) \c{SI} or
\c{ESI}.
The register used is \c{SI} if the address size is 16 bits, and
\c{ESI} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
The segment register used to load from \c{[SI]} or \c{[ESI]} can be
overridden by using a segment register name as a prefix (for
example, \c{ES LODSB}).
\c{LODSW} and \c{LODSD} work in the same way, but they load a
word or a doubleword instead of a byte, and increment or decrement
the addressing registers by 2 or 4 instead of 1.
\S{insLOOP} \i\c{LOOP}, \i\c{LOOPE}, \i\c{LOOPZ}, \i\c{LOOPNE}, \i\c{LOOPNZ}: Loop with Counter
\c LOOP imm ; E2 rb [8086]
\c LOOP imm,CX ; a16 E2 rb [8086]
\c LOOP imm,ECX ; a32 E2 rb [386]
\c LOOPE imm ; E1 rb [8086]
\c LOOPE imm,CX ; a16 E1 rb [8086]
\c LOOPE imm,ECX ; a32 E1 rb [386]
\c LOOPZ imm ; E1 rb [8086]
\c LOOPZ imm,CX ; a16 E1 rb [8086]
\c LOOPZ imm,ECX ; a32 E1 rb [386]
\c LOOPNE imm ; E0 rb [8086]
\c LOOPNE imm,CX ; a16 E0 rb [8086]
\c LOOPNE imm,ECX ; a32 E0 rb [386]
\c LOOPNZ imm ; E0 rb [8086]
\c LOOPNZ imm,CX ; a16 E0 rb [8086]
\c LOOPNZ imm,ECX ; a32 E0 rb [386]
\c{LOOP} decrements its counter register (either \c{CX} or \c{ECX} -
if one is not specified explicitly, the \c{BITS} setting dictates
which is used) by one, and if the counter does not become zero as a
result of this operation, it jumps to the given label. The jump has
a range of 128 bytes.
\c{LOOPE} (or its synonym \c{LOOPZ}) adds the additional condition
that it only jumps if the counter is nonzero \e{and} the zero flag
is set. Similarly, \c{LOOPNE} (and \c{LOOPNZ}) jumps only if the
counter is nonzero and the zero flag is clear.
\S{insLSL} \i\c{LSL}: Load Segment Limit
\c LSL reg16,r/m16 ; o16 0F 03 /r [286,PRIV]
\c LSL reg32,r/m32 ; o32 0F 03 /r [286,PRIV]
\c{LSL} is given a segment selector in its source (second) operand;
it computes the segment limit value by loading the segment limit
field from the associated segment descriptor in the \c{GDT} or \c{LDT}.
(This involves shifting left by 12 bits if the segment limit is
page-granular, and not if it is byte-granular; so you end up with a
byte limit in either case.) The segment limit obtained is then
loaded into the destination (first) operand.
\S{insLTR} \i\c{LTR}: Load Task Register
\c LTR r/m16 ; 0F 00 /3 [286,PRIV]
\c{LTR} looks up the segment base and limit in the GDT or LDT
descriptor specified by the segment selector given as its operand,
and loads them into the Task Register.
\S{insMASKMOVDQU} \i\c{MASKMOVDQU}: Byte Mask Write
\c MASKMOVDQU xmm1,xmm2 ; 66 0F F7 /r [WILLAMETTE,SSE2]
\c{MASKMOVDQU} stores data from xmm1 to the location specified by
\c{ES:(E)DI}. The size of the store depends on the address-size
attribute. The most significant bit in each byte of the mask
register xmm2 is used to selectively write the data (0 = no write,
1 = write) on a per-byte basis.
\S{insMASKMOVQ} \i\c{MASKMOVQ}: Byte Mask Write
\c MASKMOVQ mm1,mm2 ; 0F F7 /r [KATMAI,MMX]
\c{MASKMOVQ} stores data from mm1 to the location specified by
\c{ES:(E)DI}. The size of the store depends on the address-size
attribute. The most significant bit in each byte of the mask
register mm2 is used to selectively write the data (0 = no write,
1 = write) on a per-byte basis.
\S{insMAXPD} \i\c{MAXPD}: Return Packed Double-Precision FP Maximum
\c MAXPD xmm1,xmm2/m128 ; 66 0F 5F /r [WILLAMETTE,SSE2]
\c{MAXPD} performs a SIMD compare of the packed double-precision
FP numbers from xmm1 and xmm2/mem, and stores the maximum values
of each pair of values in xmm1. If the values being compared are
both zeroes, source2 (xmm2/m128) would be returned. If source2
(xmm2/m128) is an SNaN, this SNaN is forwarded unchanged to the
destination (i.e., a QNaN version of the SNaN is not returned).
\S{insMAXPS} \i\c{MAXPS}: Return Packed Single-Precision FP Maximum
\c MAXPS xmm1,xmm2/m128 ; 0F 5F /r [KATMAI,SSE]
\c{MAXPS} performs a SIMD compare of the packed single-precision
FP numbers from xmm1 and xmm2/mem, and stores the maximum values
of each pair of values in xmm1. If the values being compared are
both zeroes, source2 (xmm2/m128) would be returned. If source2
(xmm2/m128) is an SNaN, this SNaN is forwarded unchanged to the
destination (i.e., a QNaN version of the SNaN is not returned).
\S{insMAXSD} \i\c{MAXSD}: Return Scalar Double-Precision FP Maximum
\c MAXSD xmm1,xmm2/m64 ; F2 0F 5F /r [WILLAMETTE,SSE2]
\c{MAXSD} compares the low-order double-precision FP numbers from
xmm1 and xmm2/mem, and stores the maximum value in xmm1. If the
values being compared are both zeroes, source2 (xmm2/m64) would
be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is
forwarded unchanged to the destination (i.e., a QNaN version of
the SNaN is not returned). The high quadword of the destination
is left unchanged.
\S{insMAXSS} \i\c{MAXSS}: Return Scalar Single-Precision FP Maximum
\c MAXSS xmm1,xmm2/m32 ; F3 0F 5F /r [KATMAI,SSE]
\c{MAXSS} compares the low-order single-precision FP numbers from
xmm1 and xmm2/mem, and stores the maximum value in xmm1. If the
values being compared are both zeroes, source2 (xmm2/m32) would
be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is
forwarded unchanged to the destination (i.e., a QNaN version of
the SNaN is not returned). The high three doublewords of the
destination are left unchanged.
\S{insMFENCE} \i\c{MFENCE}: Memory Fence
\c MFENCE ; 0F AE /6 [WILLAMETTE,SSE2]
\c{MFENCE} performs a serialising operation on all loads from memory
and writes to memory that were issued before the \c{MFENCE} instruction.
This guarantees that all memory reads and writes before the \c{MFENCE}
instruction are completed before any reads and writes after the
\c{MFENCE} instruction.
\c{MFENCE} is ordered respective to other \c{MFENCE} instructions,
\c{LFENCE}, \c{SFENCE}, any memory read and any other serialising
instruction (such as \c{CPUID}).
Weakly ordered memory types can be used to achieve higher processor
performance through such techniques as out-of-order issue, speculative
reads, write-combining, and write-collapsing. The degree to which a
consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this
data. The \c{MFENCE} instruction provides a performance-efficient way
of ensuring load and store ordering between routines that produce
weakly-ordered results and routines that consume that data.
\c{MFENCE} uses the following ModRM encoding:
\c Mod (7:6) = 11B
\c Reg/Opcode (5:3) = 110B
\c R/M (2:0) = 000B
All other ModRM encodings are defined to be reserved, and use
of these encodings risks incompatibility with future processors.
See also \c{LFENCE} (\k{insLFENCE}) and \c{SFENCE} (\k{insSFENCE}).
\S{insMINPD} \i\c{MINPD}: Return Packed Double-Precision FP Minimum
\c MINPD xmm1,xmm2/m128 ; 66 0F 5D /r [WILLAMETTE,SSE2]
\c{MINPD} performs a SIMD compare of the packed double-precision
FP numbers from xmm1 and xmm2/mem, and stores the minimum values
of each pair of values in xmm1. If the values being compared are
both zeroes, source2 (xmm2/m128) would be returned. If source2
(xmm2/m128) is an SNaN, this SNaN is forwarded unchanged to the
destination (i.e., a QNaN version of the SNaN is not returned).
\S{insMINPS} \i\c{MINPS}: Return Packed Single-Precision FP Minimum
\c MINPS xmm1,xmm2/m128 ; 0F 5D /r [KATMAI,SSE]
\c{MINPS} performs a SIMD compare of the packed single-precision
FP numbers from xmm1 and xmm2/mem, and stores the minimum values
of each pair of values in xmm1. If the values being compared are
both zeroes, source2 (xmm2/m128) would be returned. If source2
(xmm2/m128) is an SNaN, this SNaN is forwarded unchanged to the
destination (i.e., a QNaN version of the SNaN is not returned).
\S{insMINSD} \i\c{MINSD}: Return Scalar Double-Precision FP Minimum
\c MINSD xmm1,xmm2/m64 ; F2 0F 5D /r [WILLAMETTE,SSE2]
\c{MINSD} compares the low-order double-precision FP numbers from
xmm1 and xmm2/mem, and stores the minimum value in xmm1. If the
values being compared are both zeroes, source2 (xmm2/m64) would
be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is
forwarded unchanged to the destination (i.e., a QNaN version of
the SNaN is not returned). The high quadword of the destination
is left unchanged.
\S{insMINSS} \i\c{MINSS}: Return Scalar Single-Precision FP Minimum
\c MINSS xmm1,xmm2/m32 ; F3 0F 5D /r [KATMAI,SSE]
\c{MINSS} compares the low-order single-precision FP numbers from
xmm1 and xmm2/mem, and stores the minimum value in xmm1. If the
values being compared are both zeroes, source2 (xmm2/m32) would
be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is
forwarded unchanged to the destination (i.e., a QNaN version of
the SNaN is not returned). The high three doublewords of the
destination are left unchanged.
\S{insMOV} \i\c{MOV}: Move Data
\c MOV r/m8,reg8 ; 88 /r [8086]
\c MOV r/m16,reg16 ; o16 89 /r [8086]
\c MOV r/m32,reg32 ; o32 89 /r [386]
\c MOV reg8,r/m8 ; 8A /r [8086]
\c MOV reg16,r/m16 ; o16 8B /r [8086]
\c MOV reg32,r/m32 ; o32 8B /r [386]
\c MOV reg8,imm8 ; B0+r ib [8086]
\c MOV reg16,imm16 ; o16 B8+r iw [8086]
\c MOV reg32,imm32 ; o32 B8+r id [386]
\c MOV r/m8,imm8 ; C6 /0 ib [8086]
\c MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
\c MOV r/m32,imm32 ; o32 C7 /0 id [386]
\c MOV AL,memoffs8 ; A0 ow/od [8086]
\c MOV AX,memoffs16 ; o16 A1 ow/od [8086]
\c MOV EAX,memoffs32 ; o32 A1 ow/od [386]
\c MOV memoffs8,AL ; A2 ow/od [8086]
\c MOV memoffs16,AX ; o16 A3 ow/od [8086]
\c MOV memoffs32,EAX ; o32 A3 ow/od [386]
\c MOV r/m16,segreg ; o16 8C /r [8086]
\c MOV r/m32,segreg ; o32 8C /r [386]
\c MOV segreg,r/m16 ; o16 8E /r [8086]
\c MOV segreg,r/m32 ; o32 8E /r [386]
\c MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
\c MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
\c MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
\c MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
\c MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
\c MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]
\c{MOV} copies the contents of its source (second) operand into its
destination (first) operand.
In all forms of the \c{MOV} instruction, the two operands are the
same size, except for moving between a segment register and an
\c{r/m32} operand. These instructions are treated exactly like the
corresponding 16-bit equivalent (so that, for example, \c{MOV
DS,EAX} functions identically to \c{MOV DS,AX} but saves a prefix
when in 32-bit mode), except that when a segment register is moved
into a 32-bit destination, the top two bytes of the result are
undefined.
\c{MOV} may not use \c{CS} as a destination.
\c{CR4} is only a supported register on the Pentium and above.
Test registers are supported on 386/486 processors and on some
non-Intel Pentium class processors.
\S{insMOVAPD} \i\c{MOVAPD}: Move Aligned Packed Double-Precision FP Values
\c MOVAPD xmm1,xmm2/mem128 ; 66 0F 28 /r [WILLAMETTE,SSE2]
\c MOVAPD xmm1/mem128,xmm2 ; 66 0F 29 /r [WILLAMETTE,SSE2]
\c{MOVAPD} moves a double quadword containing 2 packed double-precision
FP values from the source operand to the destination. When the source
or destination operand is a memory location, it must be aligned on a
16-byte boundary.
To move data in and out of memory locations that are not known to be on
16-byte boundaries, use the \c{MOVUPD} instruction (\k{insMOVUPD}).
\S{insMOVAPS} \i\c{MOVAPS}: Move Aligned Packed Single-Precision FP Values
\c MOVAPS xmm1,xmm2/mem128 ; 0F 28 /r [KATMAI,SSE]
\c MOVAPS xmm1/mem128,xmm2 ; 0F 29 /r [KATMAI,SSE]
\c{MOVAPS} moves a double quadword containing 4 packed single-precision
FP values from the source operand to the destination. When the source
or destination operand is a memory location, it must be aligned on a
16-byte boundary.
To move data in and out of memory locations that are not known to be on
16-byte boundaries, use the \c{MOVUPS} instruction (\k{insMOVUPS}).
\S{insMOVD} \i\c{MOVD}: Move Doubleword to/from MMX Register
\c MOVD mm,r/m32 ; 0F 6E /r [PENT,MMX]
\c MOVD r/m32,mm ; 0F 7E /r [PENT,MMX]
\c MOVD xmm,r/m32 ; 66 0F 6E /r [WILLAMETTE,SSE2]
\c MOVD r/m32,xmm ; 66 0F 7E /r [WILLAMETTE,SSE2]
\c{MOVD} copies 32 bits from its source (second) operand into its
destination (first) operand. When the destination is a 64-bit \c{MMX}
register or a 128-bit \c{XMM} register, the input value is zero-extended
to fill the destination register.
\S{insMOVDQ2Q} \i\c{MOVDQ2Q}: Move Quadword from XMM to MMX register.
\c MOVDQ2Q mm,xmm ; F2 OF D6 /r [WILLAMETTE,SSE2]
\c{MOVDQ2Q} moves the low quadword from the source operand to the
destination operand.
\S{insMOVDQA} \i\c{MOVDQA}: Move Aligned Double Quadword
\c MOVDQA xmm1,xmm2/m128 ; 66 OF 6F /r [WILLAMETTE,SSE2]
\c MOVDQA xmm1/m128,xmm2 ; 66 OF 7F /r [WILLAMETTE,SSE2]
\c{MOVDQA} moves a double quadword from the source operand to the
destination operand. When the source or destination operand is a
memory location, it must be aligned to a 16-byte boundary.
To move a double quadword to or from unaligned memory locations,
use the \c{MOVDQU} instruction (\k{insMOVDQU}).
\S{insMOVDQU} \i\c{MOVDQU}: Move Unaligned Double Quadword
\c MOVDQU xmm1,xmm2/m128 ; F3 OF 6F /r [WILLAMETTE,SSE2]
\c MOVDQU xmm1/m128,xmm2 ; F3 OF 7F /r [WILLAMETTE,SSE2]
\c{MOVDQU} moves a double quadword from the source operand to the
destination operand. When the source or destination operand is a
memory location, the memory may be unaligned.
To move a double quadword to or from known aligned memory locations,
use the \c{MOVDQA} instruction (\k{insMOVDQA}).
\S{insMOVHLPS} \i\c{MOVHLPS}: Move Packed Single-Precision FP High to Low
\c MOVHLPS xmm1,xmm2 ; OF 12 /r [KATMAI,SSE]
\c{MOVHLPS} moves the two packed single-precision FP values from the
high quadword of the source register xmm2 to the low quadword of the
destination register, xmm2. The upper quadword of xmm1 is left unchanged.
The operation of this instruction is:
\c dst[0-63] := src[64-127],
\c dst[64-127] remains unchanged.
\S{insMOVHPD} \i\c{MOVHPD}: Move High Packed Double-Precision FP
\c MOVHPD xmm,m64 ; 66 OF 16 /r [WILLAMETTE,SSE2]
\c MOVHPD m64,xmm ; 66 OF 17 /r [WILLAMETTE,SSE2]
\c{MOVHPD} moves a double-precision FP value between the source and
destination operands. One of the operands is a 64-bit memory location,
the other is the high quadword of an \c{XMM} register.
The operation of this instruction is:
\c mem[0-63] := xmm[64-127];
or
\c xmm[0-63] remains unchanged;
\c xmm[64-127] := mem[0-63].
\S{insMOVHPS} \i\c{MOVHPS}: Move High Packed Single-Precision FP
\c MOVHPS xmm,m64 ; 0F 16 /r [KATMAI,SSE]
\c MOVHPS m64,xmm ; 0F 17 /r [KATMAI,SSE]
\c{MOVHPS} moves two packed single-precision FP values between the source
and destination operands. One of the operands is a 64-bit memory location,
the other is the high quadword of an \c{XMM} register.
The operation of this instruction is:
\c mem[0-63] := xmm[64-127];
or
\c xmm[0-63] remains unchanged;
\c xmm[64-127] := mem[0-63].
\S{insMOVLHPS} \i\c{MOVLHPS}: Move Packed Single-Precision FP Low to High
\c MOVLHPS xmm1,xmm2 ; OF 16 /r [KATMAI,SSE]
\c{MOVLHPS} moves the two packed single-precision FP values from the
low quadword of the source register xmm2 to the high quadword of the
destination register, xmm2. The low quadword of xmm1 is left unchanged.
The operation of this instruction is:
\c dst[0-63] remains unchanged;
\c dst[64-127] := src[0-63].
\S{insMOVLPD} \i\c{MOVLPD}: Move Low Packed Double-Precision FP
\c MOVLPD xmm,m64 ; 66 OF 12 /r [WILLAMETTE,SSE2]
\c MOVLPD m64,xmm ; 66 OF 13 /r [WILLAMETTE,SSE2]
\c{MOVLPD} moves a double-precision FP value between the source and
destination operands. One of the operands is a 64-bit memory location,
the other is the low quadword of an \c{XMM} register.
The operation of this instruction is:
\c mem(0-63) := xmm(0-63);
or
\c xmm(0-63) := mem(0-63);
\c xmm(64-127) remains unchanged.
\S{insMOVLPS} \i\c{MOVLPS}: Move Low Packed Single-Precision FP
\c MOVLPS xmm,m64 ; OF 12 /r [KATMAI,SSE]
\c MOVLPS m64,xmm ; OF 13 /r [KATMAI,SSE]
\c{MOVLPS} moves two packed single-precision FP values between the source
and destination operands. One of the operands is a 64-bit memory location,
the other is the low quadword of an \c{XMM} register.
The operation of this instruction is:
\c mem(0-63) := xmm(0-63);
or
\c xmm(0-63) := mem(0-63);
\c xmm(64-127) remains unchanged.
\S{insMOVMSKPD} \i\c{MOVMSKPD}: Extract Packed Double-Precision FP Sign Mask
\c MOVMSKPD reg32,xmm ; 66 0F 50 /r [WILLAMETTE,SSE2]
\c{MOVMSKPD} inserts a 2-bit mask in r32, formed of the most significant
bits of each double-precision FP number of the source operand.
\S{insMOVMSKPS} \i\c{MOVMSKPS}: Extract Packed Single-Precision FP Sign Mask
\c MOVMSKPS reg32,xmm ; 0F 50 /r [KATMAI,SSE]
\c{MOVMSKPS} inserts a 4-bit mask in r32, formed of the most significant
bits of each single-precision FP number of the source operand.
\S{insMOVNTDQ} \i\c{MOVNTDQ}: Move Double Quadword Non Temporal
\c MOVNTDQ m128,xmm ; 66 0F E7 /r [WILLAMETTE,SSE2]
\c{MOVNTDQ} moves the double quadword from the \c{XMM} source
register to the destination memory location, using a non-temporal
hint. This store instruction minimizes cache pollution.
\S{insMOVNTI} \i\c{MOVNTI}: Move Doubleword Non Temporal
\c MOVNTI m32,reg32 ; 0F C3 /r [WILLAMETTE,SSE2]
\c{MOVNTI} moves the doubleword in the source register
to the destination memory location, using a non-temporal
hint. This store instruction minimizes cache pollution.
\S{insMOVNTPD} \i\c{MOVNTPD}: Move Aligned Four Packed Single-Precision
FP Values Non Temporal
\c MOVNTPD m128,xmm ; 66 0F 2B /r [WILLAMETTE,SSE2]
\c{MOVNTPD} moves the double quadword from the \c{XMM} source
register to the destination memory location, using a non-temporal
hint. This store instruction minimizes cache pollution. The memory
location must be aligned to a 16-byte boundary.
\S{insMOVNTPS} \i\c{MOVNTPS}: Move Aligned Four Packed Single-Precision
FP Values Non Temporal
\c MOVNTPS m128,xmm ; 0F 2B /r [KATMAI,SSE]
\c{MOVNTPS} moves the double quadword from the \c{XMM} source
register to the destination memory location, using a non-temporal
hint. This store instruction minimizes cache pollution. The memory
location must be aligned to a 16-byte boundary.
\S{insMOVNTQ} \i\c{MOVNTQ}: Move Quadword Non Temporal
\c MOVNTQ m64,mm ; 0F E7 /r [KATMAI,MMX]
\c{MOVNTQ} moves the quadword in the \c{MMX} source register
to the destination memory location, using a non-temporal
hint. This store instruction minimizes cache pollution.
\S{insMOVQ} \i\c{MOVQ}: Move Quadword to/from MMX Register
\c MOVQ mm1,mm2/m64 ; 0F 6F /r [PENT,MMX]
\c MOVQ mm1/m64,mm2 ; 0F 7F /r [PENT,MMX]
\c MOVQ xmm1,xmm2/m64 ; F3 0F 7E /r [WILLAMETTE,SSE2]
\c MOVQ xmm1/m64,xmm2 ; 66 0F D6 /r [WILLAMETTE,SSE2]
\c{MOVQ} copies 64 bits from its source (second) operand into its
destination (first) operand. When the source is an \c{XMM} register,
the low quadword is moved. When the destination is an \c{XMM} register,
the destination is the low quadword, and the high quadword is cleared.
\S{insMOVQ2DQ} \i\c{MOVQ2DQ}: Move Quadword from MMX to XMM register.
\c MOVQ2DQ xmm,mm ; F3 OF D6 /r [WILLAMETTE,SSE2]
\c{MOVQ2DQ} moves the quadword from the source operand to the low
quadword of the destination operand, and clears the high quadword.
\S{insMOVSB} \i\c{MOVSB}, \i\c{MOVSW}, \i\c{MOVSD}: Move String
\c MOVSB ; A4 [8086]
\c MOVSW ; o16 A5 [8086]
\c MOVSD ; o32 A5 [386]
\c{MOVSB} copies the byte at \c{[DS:SI]} or \c{[DS:ESI]} to
\c{[ES:DI]} or \c{[ES:EDI]}. It then increments or decrements
(depending on the direction flag: increments if the flag is clear,
decrements if it is set) \c{SI} and \c{DI} (or \c{ESI} and \c{EDI}).
The registers used are \c{SI} and \c{DI} if the address size is 16
bits, and \c{ESI} and \c{EDI} if it is 32 bits. If you need to use
an address size not equal to the current \c{BITS} setting, you can
use an explicit \i\c{a16} or \i\c{a32} prefix.
The segment register used to load from \c{[SI]} or \c{[ESI]} can be
overridden by using a segment register name as a prefix (for
example, \c{es movsb}). The use of \c{ES} for the store to \c{[DI]}
or \c{[EDI]} cannot be overridden.
\c{MOVSW} and \c{MOVSD} work in the same way, but they copy a word
or a doubleword instead of a byte, and increment or decrement the
addressing registers by 2 or 4 instead of 1.
The \c{REP} prefix may be used to repeat the instruction \c{CX} (or
\c{ECX} - again, the address size chooses which) times.
\S{insMOVSD} \i\c{MOVSD}: Move Scalar Double-Precision FP Value
\c MOVSD xmm1,xmm2/m64 ; F2 0F 10 /r [WILLAMETTE,SSE2]
\c MOVSD xmm1/m64,xmm2 ; F2 0F 11 /r [WILLAMETTE,SSE2]
\c{MOVSD} moves a double-precision FP value from the source operand
to the destination operand. When the source or destination is a
register, the low-order FP value is read or written.
\S{insMOVSS} \i\c{MOVSS}: Move Scalar Single-Precision FP Value
\c MOVSS xmm1,xmm2/m32 ; F3 0F 10 /r [KATMAI,SSE]
\c MOVSS xmm1/m32,xmm2 ; F3 0F 11 /r [KATMAI,SSE]
\c{MOVSS} moves a single-precision FP value from the source operand
to the destination operand. When the source or destination is a
register, the low-order FP value is read or written.
\S{insMOVSX} \i\c{MOVSX}, \i\c{MOVZX}: Move Data with Sign or Zero Extend
\c MOVSX reg16,r/m8 ; o16 0F BE /r [386]
\c MOVSX reg32,r/m8 ; o32 0F BE /r [386]
\c MOVSX reg32,r/m16 ; o32 0F BF /r [386]
\c MOVZX reg16,r/m8 ; o16 0F B6 /r [386]
\c MOVZX reg32,r/m8 ; o32 0F B6 /r [386]
\c MOVZX reg32,r/m16 ; o32 0F B7 /r [386]
\c{MOVSX} sign-extends its source (second) operand to the length of
its destination (first) operand, and copies the result into the
destination operand. \c{MOVZX} does the same, but zero-extends
rather than sign-extending.
\S{insMOVUPD} \i\c{MOVUPD}: Move Unaligned Packed Double-Precision FP Values
\c MOVUPD xmm1,xmm2/mem128 ; 66 0F 10 /r [WILLAMETTE,SSE2]
\c MOVUPD xmm1/mem128,xmm2 ; 66 0F 11 /r [WILLAMETTE,SSE2]
\c{MOVUPD} moves a double quadword containing 2 packed double-precision
FP values from the source operand to the destination. This instruction
makes no assumptions about alignment of memory operands.
To move data in and out of memory locations that are known to be on 16-byte
boundaries, use the \c{MOVAPD} instruction (\k{insMOVAPD}).
\S{insMOVUPS} \i\c{MOVUPS}: Move Unaligned Packed Single-Precision FP Values
\c MOVUPS xmm1,xmm2/mem128 ; 0F 10 /r [KATMAI,SSE]
\c MOVUPS xmm1/mem128,xmm2 ; 0F 11 /r [KATMAI,SSE]
\c{MOVUPS} moves a double quadword containing 4 packed single-precision
FP values from the source operand to the destination. This instruction
makes no assumptions about alignment of memory operands.
To move data in and out of memory locations that are known to be on 16-byte
boundaries, use the \c{MOVAPS} instruction (\k{insMOVAPS}).
\S{insMUL} \i\c{MUL}: Unsigned Integer Multiply
\c MUL r/m8 ; F6 /4 [8086]
\c MUL r/m16 ; o16 F7 /4 [8086]
\c MUL r/m32 ; o32 F7 /4 [386]
\c{MUL} performs unsigned integer multiplication. The other operand
to the multiplication, and the destination operand, are implicit, in
the following way:
\b For \c{MUL r/m8}, \c{AL} is multiplied by the given operand; the
product is stored in \c{AX}.
\b For \c{MUL r/m16}, \c{AX} is multiplied by the given operand;
the product is stored in \c{DX:AX}.
\b For \c{MUL r/m32}, \c{EAX} is multiplied by the given operand;
the product is stored in \c{EDX:EAX}.
Signed integer multiplication is performed by the \c{IMUL}
instruction: see \k{insIMUL}.
\S{insMULPD} \i\c{MULPD}: Packed Single-FP Multiply
\c MULPD xmm1,xmm2/mem128 ; 66 0F 59 /r [WILLAMETTE,SSE2]
\c{MULPD} performs a SIMD multiply of the packed double-precision FP
values in both operands, and stores the results in the destination register.
\S{insMULPS} \i\c{MULPS}: Packed Single-FP Multiply
\c MULPS xmm1,xmm2/mem128 ; 0F 59 /r [KATMAI,SSE]
\c{MULPS} performs a SIMD multiply of the packed single-precision FP
values in both operands, and stores the results in the destination register.
\S{insMULSD} \i\c{MULSD}: Scalar Single-FP Multiply
\c MULSD xmm1,xmm2/mem32 ; F2 0F 59 /r [WILLAMETTE,SSE2]
\c{MULSD} multiplies the lowest double-precision FP values of both
operands, and stores the result in the low quadword of xmm1.
\S{insMULSS} \i\c{MULSS}: Scalar Single-FP Multiply
\c MULSS xmm1,xmm2/mem32 ; F3 0F 59 /r [KATMAI,SSE]
\c{MULSS} multiplies the lowest single-precision FP values of both
operands, and stores the result in the low doubleword of xmm1.
\S{insNEG} \i\c{NEG}, \i\c{NOT}: Two's and One's Complement
\c NEG r/m8 ; F6 /3 [8086]
\c NEG r/m16 ; o16 F7 /3 [8086]
\c NEG r/m32 ; o32 F7 /3 [386]
\c NOT r/m8 ; F6 /2 [8086]
\c NOT r/m16 ; o16 F7 /2 [8086]
\c NOT r/m32 ; o32 F7 /2 [386]
\c{NEG} replaces the contents of its operand by the two's complement
negation (invert all the bits and then add one) of the original
value. \c{NOT}, similarly, performs one's complement (inverts all
the bits).
\S{insNOP} \i\c{NOP}: No Operation
\c NOP ; 90 [8086]
\c{NOP} performs no operation. Its opcode is the same as that
generated by \c{XCHG AX,AX} or \c{XCHG EAX,EAX} (depending on the
processor mode; see \k{insXCHG}).
\S{insOR} \i\c{OR}: Bitwise OR
\c OR r/m8,reg8 ; 08 /r [8086]
\c OR r/m16,reg16 ; o16 09 /r [8086]
\c OR r/m32,reg32 ; o32 09 /r [386]
\c OR reg8,r/m8 ; 0A /r [8086]
\c OR reg16,r/m16 ; o16 0B /r [8086]
\c OR reg32,r/m32 ; o32 0B /r [386]
\c OR r/m8,imm8 ; 80 /1 ib [8086]
\c OR r/m16,imm16 ; o16 81 /1 iw [8086]
\c OR r/m32,imm32 ; o32 81 /1 id [386]
\c OR r/m16,imm8 ; o16 83 /1 ib [8086]
\c OR r/m32,imm8 ; o32 83 /1 ib [386]
\c OR AL,imm8 ; 0C ib [8086]
\c OR AX,imm16 ; o16 0D iw [8086]
\c OR EAX,imm32 ; o32 0D id [386]
\c{OR} performs a bitwise OR operation between its two operands
(i.e. each bit of the result is 1 if and only if at least one of the
corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
The MMX instruction \c{POR} (see \k{insPOR}) performs the same
operation on the 64-bit MMX registers.
\S{insORPD} \i\c{ORPD}: Bit-wise Logical OR of Double-Precision FP Data
\c ORPD xmm1,xmm2/m128 ; 66 0F 56 /r [WILLAMETTE,SSE2]
\c{ORPD} return a bit-wise logical OR between xmm1 and xmm2/mem,
and stores the result in xmm1. If the source operand is a memory
location, it must be aligned to a 16-byte boundary.
\S{insORPS} \i\c{ORPS}: Bit-wise Logical OR of Single-Precision FP Data
\c ORPS xmm1,xmm2/m128 ; 0F 56 /r [KATMAI,SSE]
\c{ORPS} return a bit-wise logical OR between xmm1 and xmm2/mem,
and stores the result in xmm1. If the source operand is a memory
location, it must be aligned to a 16-byte boundary.
\S{insOUT} \i\c{OUT}: Output Data to I/O Port
\c OUT imm8,AL ; E6 ib [8086]
\c OUT imm8,AX ; o16 E7 ib [8086]
\c OUT imm8,EAX ; o32 E7 ib [386]
\c OUT DX,AL ; EE [8086]
\c OUT DX,AX ; o16 EF [8086]
\c OUT DX,EAX ; o32 EF [386]
\c{OUT} writes the contents of the given source register to the
specified I/O port. The port number may be specified as an immediate
value if it is between 0 and 255, and otherwise must be stored in
\c{DX}. See also \c{IN} (\k{insIN}).
\S{insOUTSB} \i\c{OUTSB}, \i\c{OUTSW}, \i\c{OUTSD}: Output String to I/O Port
\c OUTSB ; 6E [186]
\c OUTSW ; o16 6F [186]
\c OUTSD ; o32 6F [386]
\c{OUTSB} loads a byte from \c{[DS:SI]} or \c{[DS:ESI]} and writes
it to the I/O port specified in \c{DX}. It then increments or
decrements (depending on the direction flag: increments if the flag
is clear, decrements if it is set) \c{SI} or \c{ESI}.
The register used is \c{SI} if the address size is 16 bits, and
\c{ESI} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
The segment register used to load from \c{[SI]} or \c{[ESI]} can be
overridden by using a segment register name as a prefix (for
example, \c{es outsb}).
\c{OUTSW} and \c{OUTSD} work in the same way, but they output a
word or a doubleword instead of a byte, and increment or decrement
the addressing registers by 2 or 4 instead of 1.
The \c{REP} prefix may be used to repeat the instruction \c{CX} (or
\c{ECX} - again, the address size chooses which) times.
\S{insPACKSSDW} \i\c{PACKSSDW}, \i\c{PACKSSWB}, \i\c{PACKUSWB}: Pack Data
\c PACKSSDW mm1,mm2/m64 ; 0F 6B /r [PENT,MMX]
\c PACKSSWB mm1,mm2/m64 ; 0F 63 /r [PENT,MMX]
\c PACKUSWB mm1,mm2/m64 ; 0F 67 /r [PENT,MMX]
\c PACKSSDW xmm1,xmm2/m128 ; 66 0F 6B /r [WILLAMETTE,SSE2]
\c PACKSSWB xmm1,xmm2/m128 ; 66 0F 63 /r [WILLAMETTE,SSE2]
\c PACKUSWB xmm1,xmm2/m128 ; 66 0F 67 /r [WILLAMETTE,SSE2]
All these instructions start by combining the source and destination
operands, and then splitting the result in smaller sections which it
then packs into the destination register. The \c{MMX} versions pack
two 64-bit operands into one 64-bit register, while the \c{SSE}
versions pack two 128-bit operands into one 128-bit register.
\b \c{PACKSSWB} splits the combined value into words, and then reduces
the words to bytes, using signed saturation. It then packs the bytes
into the destination register in the same order the words were in.
\b \c{PACKSSDW} performs the same operation as \c{PACKSSWB}, except that
it reduces doublewords to words, then packs them into the destination
register.
\b \c{PACKUSWB} performs the same operation as \c{PACKSSWB}, except that
it uses unsigned saturation when reducing the size of the elements.
To perform signed saturation on a number, it is replaced by the largest
signed number (\c{7FFFh} or \c{7Fh}) that \e{will} fit, and if it is too
small it is replaced by the smallest signed number (\c{8000h} or
\c{80h}) that will fit. To perform unsigned saturation, the input is
treated as unsigned, and the input is replaced by the largest unsigned
number that will fit.
\S{insPADDB} \i\c{PADDB}, \i\c{PADDW}, \i\c{PADDD}: Add Packed Integers
\c PADDB mm1,mm2/m64 ; 0F FC /r [PENT,MMX]
\c PADDW mm1,mm2/m64 ; 0F FD /r [PENT,MMX]
\c PADDD mm1,mm2/m64 ; 0F FE /r [PENT,MMX]
\c PADDB xmm1,xmm2/m128 ; 66 0F FC /r [WILLAMETTE,SSE2]
\c PADDW xmm1,xmm2/m128 ; 66 0F FD /r [WILLAMETTE,SSE2]
\c PADDD xmm1,xmm2/m128 ; 66 0F FE /r [WILLAMETTE,SSE2]
\c{PADDx} performs packed addition of the two operands, storing the
result in the destination (first) operand.
\b \c{PADDB} treats the operands as packed bytes, and adds each byte
individually;
\b \c{PADDW} treats the operands as packed words;
\b \c{PADDD} treats its operands as packed doublewords.
When an individual result is too large to fit in its destination, it
is wrapped around and the low bits are stored, with the carry bit
discarded.
\S{insPADDQ} \i\c{PADDQ}: Add Packed Quadword Integers
\c PADDQ mm1,mm2/m64 ; 0F D4 /r [PENT,MMX]
\c PADDQ xmm1,xmm2/m128 ; 66 0F D4 /r [WILLAMETTE,SSE2]
\c{PADDQ} adds the quadwords in the source and destination operands, and
stores the result in the destination register.
When an individual result is too large to fit in its destination, it
is wrapped around and the low bits are stored, with the carry bit
discarded.
\S{insPADDSB} \i\c{PADDSB}, \i\c{PADDSW}: Add Packed Signed Integers With Saturation
\c PADDSB mm1,mm2/m64 ; 0F EC /r [PENT,MMX]
\c PADDSW mm1,mm2/m64 ; 0F ED /r [PENT,MMX]
\c PADDSB xmm1,xmm2/m128 ; 66 0F EC /r [WILLAMETTE,SSE2]
\c PADDSW xmm1,xmm2/m128 ; 66 0F ED /r [WILLAMETTE,SSE2]
\c{PADDSx} performs packed addition of the two operands, storing the
result in the destination (first) operand.
\c{PADDSB} treats the operands as packed bytes, and adds each byte
individually; and \c{PADDSW} treats the operands as packed words.
When an individual result is too large to fit in its destination, a
saturated value is stored. The resulting value is the value with the
largest magnitude of the same sign as the result which will fit in
the available space.
\S{insPADDSIW} \i\c{PADDSIW}: MMX Packed Addition to Implicit Destination
\c PADDSIW mmxreg,r/m64 ; 0F 51 /r [CYRIX,MMX]
\c{PADDSIW}, specific to the Cyrix extensions to the MMX instruction
set, performs the same function as \c{PADDSW}, except that the result
is placed in an implied register.
To work out the implied register, invert the lowest bit in the register
number. So \c{PADDSIW MM0,MM2} would put the result in \c{MM1}, but
\c{PADDSIW MM1,MM2} would put the result in \c{MM0}.
\S{insPADDUSB} \i\c{PADDUSB}, \i\c{PADDUSW}: Add Packed Unsigned Integers With Saturation
\c PADDUSB mm1,mm2/m64 ; 0F DC /r [PENT,MMX]
\c PADDUSW mm1,mm2/m64 ; 0F DD /r [PENT,MMX]
\c PADDUSB xmm1,xmm2/m128 ; 66 0F DC /r [WILLAMETTE,SSE2]
\c PADDUSW xmm1,xmm2/m128 ; 66 0F DD /r [WILLAMETTE,SSE2]
\c{PADDUSx} performs packed addition of the two operands, storing the
result in the destination (first) operand.
\c{PADDUSB} treats the operands as packed bytes, and adds each byte
individually; and \c{PADDUSW} treats the operands as packed words.
When an individual result is too large to fit in its destination, a
saturated value is stored. The resulting value is the maximum value
that will fit in the available space.
\S{insPAND} \i\c{PAND}, \i\c{PANDN}: MMX Bitwise AND and AND-NOT
\c PAND mm1,mm2/m64 ; 0F DB /r [PENT,MMX]
\c PANDN mm1,mm2/m64 ; 0F DF /r [PENT,MMX]
\c PAND xmm1,xmm2/m128 ; 66 0F DB /r [WILLAMETTE,SSE2]
\c PANDN xmm1,xmm2/m128 ; 66 0F DF /r [WILLAMETTE,SSE2]
\c{PAND} performs a bitwise AND operation between its two operands
(i.e. each bit of the result is 1 if and only if the corresponding
bits of the two inputs were both 1), and stores the result in the
destination (first) operand.
\c{PANDN} performs the same operation, but performs a one's
complement operation on the destination (first) operand first.
\S{insPAUSE} \i\c{PAUSE}: Spin Loop Hint
\c PAUSE ; F3 90 [WILLAMETTE,SSE2]
\c{PAUSE} provides a hint to the processor that the following code
is a spin loop. This improves processor performance by bypassing
possible memory order violations. On older processors, this instruction
operates as a \c{NOP}.
\S{insPAVEB} \i\c{PAVEB}: MMX Packed Average
\c PAVEB mmxreg,r/m64 ; 0F 50 /r [CYRIX,MMX]
\c{PAVEB}, specific to the Cyrix MMX extensions, treats its two
operands as vectors of eight unsigned bytes, and calculates the
average of the corresponding bytes in the operands. The resulting
vector of eight averages is stored in the first operand.
This opcode maps to \c{MOVMSKPS r32, xmm} on processors that support
the SSE instruction set.
\S{insPAVGB} \i\c{PAVGB} \i\c{PAVGW}: Average Packed Integers
\c PAVGB mm1,mm2/m64 ; 0F E0 /r [KATMAI,MMX]
\c PAVGW mm1,mm2/m64 ; 0F E3 /r [KATMAI,MMX,SM]
\c PAVGB xmm1,xmm2/m128 ; 66 0F E0 /r [WILLAMETTE,SSE2]
\c PAVGW xmm1,xmm2/m128 ; 66 0F E3 /r [WILLAMETTE,SSE2]
\c{PAVGB} and \c{PAVGW} add the unsigned data elements of the source
operand to the unsigned data elements of the destination register,
then adds 1 to the temporary results. The results of the add are then
each independently right-shifted by one bit position. The high order
bits of each element are filled with the carry bits of the corresponding
sum.
\b \c{PAVGB} operates on packed unsigned bytes, and
\b \c{PAVGW} operates on packed unsigned words.
\S{insPAVGUSB} \i\c{PAVGUSB}: Average of unsigned packed 8-bit values
\c PAVGUSB mm1,mm2/m64 ; 0F 0F /r BF [PENT,3DNOW]
\c{PAVGUSB} adds the unsigned data elements of the source operand to
the unsigned data elements of the destination register, then adds 1
to the temporary results. The results of the add are then each
independently right-shifted by one bit position. The high order bits
of each element are filled with the carry bits of the corresponding
sum.
This instruction performs exactly the same operations as the \c{PAVGB}
\c{MMX} instruction (\k{insPAVGB}).
\S{insPCMPEQB} \i\c{PCMPxx}: Compare Packed Integers.
\c PCMPEQB mm1,mm2/m64 ; 0F 74 /r [PENT,MMX]
\c PCMPEQW mm1,mm2/m64 ; 0F 75 /r [PENT,MMX]
\c PCMPEQD mm1,mm2/m64 ; 0F 76 /r [PENT,MMX]
\c PCMPGTB mm1,mm2/m64 ; 0F 64 /r [PENT,MMX]
\c PCMPGTW mm1,mm2/m64 ; 0F 65 /r [PENT,MMX]
\c PCMPGTD mm1,mm2/m64 ; 0F 66 /r [PENT,MMX]
\c PCMPEQB xmm1,xmm2/m128 ; 66 0F 74 /r [WILLAMETTE,SSE2]
\c PCMPEQW xmm1,xmm2/m128 ; 66 0F 75 /r [WILLAMETTE,SSE2]
\c PCMPEQD xmm1,xmm2/m128 ; 66 0F 76 /r [WILLAMETTE,SSE2]
\c PCMPGTB xmm1,xmm2/m128 ; 66 0F 64 /r [WILLAMETTE,SSE2]
\c PCMPGTW xmm1,xmm2/m128 ; 66 0F 65 /r [WILLAMETTE,SSE2]
\c PCMPGTD xmm1,xmm2/m128 ; 66 0F 66 /r [WILLAMETTE,SSE2]
The \c{PCMPxx} instructions all treat their operands as vectors of
bytes, words, or doublewords; corresponding elements of the source
and destination are compared, and the corresponding element of the
destination (first) operand is set to all zeros or all ones
depending on the result of the comparison.
\b \c{PCMPxxB} treats the operands as vectors of bytes;
\b \c{PCMPxxW} treats the operands as vectors of words;
\b \c{PCMPxxD} treats the operands as vectors of doublewords;
\b \c{PCMPEQx} sets the corresponding element of the destination
operand to all ones if the two elements compared are equal;
\b \c{PCMPGTx} sets the destination element to all ones if the element
of the first (destination) operand is greater (treated as a signed
integer) than that of the second (source) operand.
\S{insPDISTIB} \i\c{PDISTIB}: MMX Packed Distance and Accumulate
with Implied Register
\c PDISTIB mm,m64 ; 0F 54 /r [CYRIX,MMX]
\c{PDISTIB}, specific to the Cyrix MMX extensions, treats its two
input operands as vectors of eight unsigned bytes. For each byte
position, it finds the absolute difference between the bytes in that
position in the two input operands, and adds that value to the byte
in the same position in the implied output register. The addition is
saturated to an unsigned byte in the same way as \c{PADDUSB}.
To work out the implied register, invert the lowest bit in the register
number. So \c{PDISTIB MM0,M64} would put the result in \c{MM1}, but
\c{PDISTIB MM1,M64} would put the result in \c{MM0}.
Note that \c{PDISTIB} cannot take a register as its second source
operand.
Operation:
\c dstI[0-7] := dstI[0-7] + ABS(src0[0-7] - src1[0-7]),
\c dstI[8-15] := dstI[8-15] + ABS(src0[8-15] - src1[8-15]),
\c .......
\c .......
\c dstI[56-63] := dstI[56-63] + ABS(src0[56-63] - src1[56-63]).
\S{insPEXTRW} \i\c{PEXTRW}: Extract Word
\c PEXTRW reg32,mm,imm8 ; 0F C5 /r ib [KATMAI,MMX]
\c PEXTRW reg32,xmm,imm8 ; 66 0F C5 /r ib [WILLAMETTE,SSE2]
\c{PEXTRW} moves the word in the source register (second operand)
that is pointed to by the count operand (third operand), into the
lower half of a 32-bit general purpose register. The upper half of
the register is cleared to all 0s.
When the source operand is an \c{MMX} register, the two least
significant bits of the count specify the source word. When it is
an \c{SSE} register, the three least significant bits specify the
word location.
\S{insPF2ID} \i\c{PF2ID}: Packed Single-Precision FP to Integer Convert
\c PF2ID mm1,mm2/m64 ; 0F 0F /r 1D [PENT,3DNOW]
\c{PF2ID} converts two single-precision FP values in the source operand
to signed 32-bit integers, using truncation, and stores them in the
destination operand. Source values that are outside the range supported
by the destination are saturated to the largest absolute value of the
same sign.
\S{insPF2IW} \i\c{PF2IW}: Packed Single-Precision FP to Integer Word Convert
\c PF2IW mm1,mm2/m64 ; 0F 0F /r 1C [PENT,3DNOW]
\c{PF2IW} converts two single-precision FP values in the source operand
to signed 16-bit integers, using truncation, and stores them in the
destination operand. Source values that are outside the range supported
by the destination are saturated to the largest absolute value of the
same sign.
\b In the K6-2 and K6-III, the 16-bit value is zero-extended to 32-bits
before storing.
\b In the K6-2+, K6-III+ and Athlon processors, the value is sign-extended
to 32-bits before storing.
\S{insPFACC} \i\c{PFACC}: Packed Single-Precision FP Accumulate
\c PFACC mm1,mm2/m64 ; 0F 0F /r AE [PENT,3DNOW]
\c{PFACC} adds the two single-precision FP values from the destination
operand together, then adds the two single-precision FP values from the
source operand, and places the results in the low and high doublewords
of the destination operand.
The operation is:
\c dst[0-31] := dst[0-31] + dst[32-63],
\c dst[32-63] := src[0-31] + src[32-63].
\S{insPFADD} \i\c{PFADD}: Packed Single-Precision FP Addition
\c PFADD mm1,mm2/m64 ; 0F 0F /r 9E [PENT,3DNOW]
\c{PFADD} performs addition on each of two packed single-precision
FP value pairs.
\c dst[0-31] := dst[0-31] + src[0-31],
\c dst[32-63] := dst[32-63] + src[32-63].
\S{insPFCMP} \i\c{PFCMPxx}: Packed Single-Precision FP Compare
\I\c{PFCMPEQ} \I\c{PFCMPGE} \I\c{PFCMPGT}
\c PFCMPEQ mm1,mm2/m64 ; 0F 0F /r B0 [PENT,3DNOW]
\c PFCMPGE mm1,mm2/m64 ; 0F 0F /r 90 [PENT,3DNOW]
\c PFCMPGT mm1,mm2/m64 ; 0F 0F /r A0 [PENT,3DNOW]
The \c{PFCMPxx} instructions compare the packed single-point FP values
in the source and destination operands, and set the destination
according to the result. If the condition is true, the destination is
set to all 1s, otherwise it's set to all 0s.
\b \c{PFCMPEQ} tests whether dst == src;
\b \c{PFCMPGE} tests whether dst >= src;
\b \c{PFCMPGT} tests whether dst > src.
\S{insPFMAX} \i\c{PFMAX}: Packed Single-Precision FP Maximum
\c PFMAX mm1,mm2/m64 ; 0F 0F /r A4 [PENT,3DNOW]
\c{PFMAX} returns the higher of each pair of single-precision FP values.
If the higher value is zero, it is returned as positive zero.
\S{insPFMIN} \i\c{PFMIN}: Packed Single-Precision FP Minimum
\c PFMIN mm1,mm2/m64 ; 0F 0F /r 94 [PENT,3DNOW]
\c{PFMIN} returns the lower of each pair of single-precision FP values.
If the lower value is zero, it is returned as positive zero.
\S{insPFMUL} \i\c{PFMUL}: Packed Single-Precision FP Multiply
\c PFMUL mm1,mm2/m64 ; 0F 0F /r B4 [PENT,3DNOW]
\c{PFMUL} returns the product of each pair of single-precision FP values.
\c dst[0-31] := dst[0-31] * src[0-31],
\c dst[32-63] := dst[32-63] * src[32-63].
\S{insPFNACC} \i\c{PFNACC}: Packed Single-Precision FP Negative Accumulate
\c PFNACC mm1,mm2/m64 ; 0F 0F /r 8A [PENT,3DNOW]
\c{PFNACC} performs a negative accumulate of the two single-precision
FP values in the source and destination registers. The result of the
accumulate from the destination register is stored in the low doubleword
of the destination, and the result of the source accumulate is stored in
the high doubleword of the destination register.
The operation is:
\c dst[0-31] := dst[0-31] - dst[32-63],
\c dst[32-63] := src[0-31] - src[32-63].
\S{insPFPNACC} \i\c{PFPNACC}: Packed Single-Precision FP Mixed Accumulate
\c PFPNACC mm1,mm2/m64 ; 0F 0F /r 8E [PENT,3DNOW]
\c{PFPNACC} performs a positive accumulate of the two single-precision
FP values in the source register and a negative accumulate of the
destination register. The result of the accumulate from the destination
register is stored in the low doubleword of the destination, and the
result of the source accumulate is stored in the high doubleword of the
destination register.
The operation is:
\c dst[0-31] := dst[0-31] - dst[32-63],
\c dst[32-63] := src[0-31] + src[32-63].
\S{insPFRCP} \i\c{PFRCP}: Packed Single-Precision FP Reciprocal Approximation
\c PFRCP mm1,mm2/m64 ; 0F 0F /r 96 [PENT,3DNOW]
\c{PFRCP} performs a low precision estimate of the reciprocal of the
low-order single-precision FP value in the source operand, storing the
result in both halves of the destination register. The result is accurate
to 14 bits.
For higher precision reciprocals, this instruction should be followed by
two more instructions: \c{PFRCPIT1} (\k{insPFRCPIT1}) and \c{PFRCPIT2}
(\k{insPFRCPIT1}). This will result in a 24-bit accuracy. For more details,
see the AMD 3DNow! technology manual.
\S{insPFRCPIT1} \i\c{PFRCPIT1}: Packed Single-Precision FP Reciprocal,
First Iteration Step
\c PFRCPIT1 mm1,mm2/m64 ; 0F 0F /r A6 [PENT,3DNOW]
\c{PFRCPIT1} performs the first intermediate step in the calculation of
the reciprocal of a single-precision FP value. The first source value
(\c{mm1} is the original value, and the second source value (\c{mm2/m64}
is the result of a \c{PFRCP} instruction.
For the final step in a reciprocal, returning the full 24-bit accuracy
of a single-precision FP value, see \c{PFRCPIT2} (\k{insPFRCPIT2}). For
more details, see the AMD 3DNow! technology manual.
\S{insPFRCPIT2} \i\c{PFRCPIT2}: Packed Single-Precision FP
Reciprocal/ Reciprocal Square Root, Second Iteration Step
\c PFRCPIT2 mm1,mm2/m64 ; 0F 0F /r B6 [PENT,3DNOW]
\c{PFRCPIT2} performs the second and final intermediate step in the
calculation of a reciprocal or reciprocal square root, refining the
values returned by the \c{PFRCP} and \c{PFRSQRT} instructions,
respectively.
The first source value (\c{mm1}) is the output of either a \c{PFRCPIT1}
or a \c{PFRSQIT1} instruction, and the second source is the output of
either the \c{PFRCP} or the \c{PFRSQRT} instruction. For more details,
see the AMD 3DNow! technology manual.
\S{insPFRSQIT1} \i\c{PFRSQIT1}: Packed Single-Precision FP Reciprocal
Square Root, First Iteration Step
\c PFRSQIT1 mm1,mm2/m64 ; 0F 0F /r A7 [PENT,3DNOW]
\c{PFRSQIT1} performs the first intermediate step in the calculation of
the reciprocal square root of a single-precision FP value. The first
source value (\c{mm1} is the square of the result of a \c{PFRSQRT}
instruction, and the second source value (\c{mm2/m64} is the original
value.
For the final step in a calculation, returning the full 24-bit accuracy
of a single-precision FP value, see \c{PFRCPIT2} (\k{insPFRCPIT2}). For
more details, see the AMD 3DNow! technology manual.
\S{insPFRSQRT} \i\c{PFRSQRT}: Packed Single-Precision FP Reciprocal
Square Root Approximation
\c PFRSQRT mm1,mm2/m64 ; 0F 0F /r 97 [PENT,3DNOW]
\c{PFRSQRT} performs a low precision estimate of the reciprocal square
root of the low-order single-precision FP value in the source operand,
storing the result in both halves of the destination register. The result
is accurate to 15 bits.
For higher precision reciprocals, this instruction should be followed by
two more instructions: \c{PFRSQIT1} (\k{insPFRSQIT1}) and \c{PFRCPIT2}
(\k{insPFRCPIT1}). This will result in a 24-bit accuracy. For more details,
see the AMD 3DNow! technology manual.
\S{insPFSUB} \i\c{PFSUB}: Packed Single-Precision FP Subtract
\c PFSUB mm1,mm2/m64 ; 0F 0F /r 9A [PENT,3DNOW]
\c{PFSUB} subtracts the single-precision FP values in the source from
those in the destination, and stores the result in the destination
operand.
\c dst[0-31] := dst[0-31] - src[0-31],
\c dst[32-63] := dst[32-63] - src[32-63].
\S{insPFSUBR} \i\c{PFSUBR}: Packed Single-Precision FP Reverse Subtract
\c PFSUBR mm1,mm2/m64 ; 0F 0F /r AA [PENT,3DNOW]
\c{PFSUBR} subtracts the single-precision FP values in the destination
from those in the source, and stores the result in the destination
operand.
\c dst[0-31] := src[0-31] - dst[0-31],
\c dst[32-63] := src[32-63] - dst[32-63].
\S{insPI2FD} \i\c{PI2FD}: Packed Doubleword Integer to Single-Precision FP Convert
\c PI2FD mm1,mm2/m64 ; 0F 0F /r 0D [PENT,3DNOW]
\c{PF2ID} converts two signed 32-bit integers in the source operand
to single-precision FP values, using truncation of significant digits,
and stores them in the destination operand.
\S{insPF2IW} \i\c{PF2IW}: Packed Word Integer to Single-Precision FP Convert
\c PI2FW mm1,mm2/m64 ; 0F 0F /r 0C [PENT,3DNOW]
\c{PF2IW} converts two signed 16-bit integers in the source operand
to single-precision FP values, and stores them in the destination
operand. The input values are in the low word of each doubleword.
\S{insPINSRW} \i\c{PINSRW}: Insert Word
\c PINSRW mm,r16/r32/m16,imm8 ;0F C4 /r ib [KATMAI,MMX]
\c PINSRW xmm,r16/r32/m16,imm8 ;66 0F C4 /r ib [WILLAMETTE,SSE2]
\c{PINSRW} loads a word from a 16-bit register (or the low half of a
32-bit register), or from memory, and loads it to the word position
in the destination register, pointed at by the count operand (third
operand). If the destination is an \c{MMX} register, the low two bits
of the count byte are used, if it is an \c{XMM} register the low 3
bits are used. The insertion is done in such a way that the other
words from the destination register are left untouched.
\S{insPMACHRIW} \i\c{PMACHRIW}: Packed Multiply and Accumulate with Rounding
\c PMACHRIW mm,m64 ; 0F 5E /r [CYRIX,MMX]
\c{PMACHRIW} takes two packed 16-bit integer inputs, multiplies the
values in the inputs, rounds on bit 15 of each result, then adds bits
15-30 of each result to the corresponding position of the \e{implied}
destination register.
The operation of this instruction is:
\c dstI[0-15] := dstI[0-15] + (mm[0-15] *m64[0-15]
\c + 0x00004000)[15-30],
\c dstI[16-31] := dstI[16-31] + (mm[16-31]*m64[16-31]
\c + 0x00004000)[15-30],
\c dstI[32-47] := dstI[32-47] + (mm[32-47]*m64[32-47]
\c + 0x00004000)[15-30],
\c dstI[48-63] := dstI[48-63] + (mm[48-63]*m64[48-63]
\c + 0x00004000)[15-30].
Note that \c{PMACHRIW} cannot take a register as its second source
operand.
\S{insPMADDWD} \i\c{PMADDWD}: MMX Packed Multiply and Add
\c PMADDWD mm1,mm2/m64 ; 0F F5 /r [PENT,MMX]
\c PMADDWD xmm1,xmm2/m128 ; 66 0F F5 /r [WILLAMETTE,SSE2]
\c{PMADDWD} treats its two inputs as vectors of signed words. It
multiplies corresponding elements of the two operands, giving doubleword
results. These are then added together in pairs and stored in the
destination operand.
The operation of this instruction is:
\c dst[0-31] := (dst[0-15] * src[0-15])
\c + (dst[16-31] * src[16-31]);
\c dst[32-63] := (dst[32-47] * src[32-47])
\c + (dst[48-63] * src[48-63]);
The following apply to the \c{SSE} version of the instruction:
\c dst[64-95] := (dst[64-79] * src[64-79])
\c + (dst[80-95] * src[80-95]);
\c dst[96-127] := (dst[96-111] * src[96-111])
\c + (dst[112-127] * src[112-127]).
\S{insPMAGW} \i\c{PMAGW}: MMX Packed Magnitude
\c PMAGW mm1,mm2/m64 ; 0F 52 /r [CYRIX,MMX]
\c{PMAGW}, specific to the Cyrix MMX extensions, treats both its
operands as vectors of four signed words. It compares the absolute
values of the words in corresponding positions, and sets each word
of the destination (first) operand to whichever of the two words in
that position had the larger absolute value.
\S{insPMAXSW} \i\c{PMAXSW}: Packed Signed Integer Word Maximum
\c PMAXSW mm1,mm2/m64 ; 0F EE /r [KATMAI,MMX]
\c PMAXSW xmm1,xmm2/m128 ; 66 0F EE /r [WILLAMETTE,SSE2]
\c{PMAXSW} compares each pair of words in the two source operands, and
for each pair it stores the maximum value in the destination register.
\S{insPMAXUB} \i\c{PMAXUB}: Packed Unsigned Integer Byte Maximum
\c PMAXUB mm1,mm2/m64 ; 0F DE /r [KATMAI,MMX]
\c PMAXUB xmm1,xmm2/m128 ; 66 0F DE /r [WILLAMETTE,SSE2]
\c{PMAXUB} compares each pair of bytes in the two source operands, and
for each pair it stores the maximum value in the destination register.
\S{insPMINSW} \i\c{PMINSW}: Packed Signed Integer Word Minimum
\c PMINSW mm1,mm2/m64 ; 0F EA /r [KATMAI,MMX]
\c PMINSW xmm1,xmm2/m128 ; 66 0F EA /r [WILLAMETTE,SSE2]
\c{PMINSW} compares each pair of words in the two source operands, and
for each pair it stores the minimum value in the destination register.
\S{insPMINUB} \i\c{PMINUB}: Packed Unsigned Integer Byte Minimum
\c PMINUB mm1,mm2/m64 ; 0F DA /r [KATMAI,MMX]
\c PMINUB xmm1,xmm2/m128 ; 66 0F DA /r [WILLAMETTE,SSE2]
\c{PMINUB} compares each pair of bytes in the two source operands, and
for each pair it stores the minimum value in the destination register.
\S{insPMOVMSKB} \i\c{PMOVMSKB}: Move Byte Mask To Integer
\c PMOVMSKB reg32,mm ; 0F D7 /r [KATMAI,MMX]
\c PMOVMSKB reg32,xmm ; 66 0F D7 /r [WILLAMETTE,SSE2]
\c{PMOVMSKB} returns an 8-bit or 16-bit mask formed of the most
significant bits of each byte of source operand (8-bits for an
\c{MMX} register, 16-bits for an \c{XMM} register).
\S{insPMULHRW} \i\c{PMULHRWC}, \i\c{PMULHRIW}: Multiply Packed 16-bit Integers
With Rounding, and Store High Word
\c PMULHRWC mm1,mm2/m64 ; 0F 59 /r [CYRIX,MMX]
\c PMULHRIW mm1,mm2/m64 ; 0F 5D /r [CYRIX,MMX]
These instructions take two packed 16-bit integer inputs, multiply the
values in the inputs, round on bit 15 of each result, then store bits
15-30 of each result to the corresponding position of the destination
register.
\b For \c{PMULHRWC}, the destination is the first source operand.
\b For \c{PMULHRIW}, the destination is an implied register (worked out
as described for \c{PADDSIW} (\k{insPADDSIW})).
The operation of this instruction is:
\c dst[0-15] := (src1[0-15] *src2[0-15] + 0x00004000)[15-30]
\c dst[16-31] := (src1[16-31]*src2[16-31] + 0x00004000)[15-30]
\c dst[32-47] := (src1[32-47]*src2[32-47] + 0x00004000)[15-30]
\c dst[48-63] := (src1[48-63]*src2[48-63] + 0x00004000)[15-30]
See also \c{PMULHRWA} (\k{insPMULHRWA}) for a 3DNow! version of this
instruction.
\S{insPMULHRWA} \i\c{PMULHRWA}: Multiply Packed 16-bit Integers
With Rounding, and Store High Word
\c PMULHRWA mm1,mm2/m64 ; 0F 0F /r B7 [PENT,3DNOW]
\c{PMULHRWA} takes two packed 16-bit integer inputs, multiplies
the values in the inputs, rounds on bit 16 of each result, then
stores bits 16-31 of each result to the corresponding position
of the destination register.
The operation of this instruction is:
\c dst[0-15] := (src1[0-15] *src2[0-15] + 0x00008000)[16-31];
\c dst[16-31] := (src1[16-31]*src2[16-31] + 0x00008000)[16-31];
\c dst[32-47] := (src1[32-47]*src2[32-47] + 0x00008000)[16-31];
\c dst[48-63] := (src1[48-63]*src2[48-63] + 0x00008000)[16-31].
See also \c{PMULHRWC} (\k{insPMULHRW}) for a Cyrix version of this
instruction.
\S{insPMULHUW} \i\c{PMULHUW}: Multiply Packed 16-bit Integers,
and Store High Word
\c PMULHUW mm1,mm2/m64 ; 0F E4 /r [KATMAI,MMX]
\c PMULHUW xmm1,xmm2/m128 ; 66 0F E4 /r [WILLAMETTE,SSE2]
\c{PMULHUW} takes two packed unsigned 16-bit integer inputs, multiplies
the values in the inputs, then stores bits 16-31 of each result to the
corresponding position of the destination register.
\S{insPMULHW} \i\c{PMULHW}, \i\c{PMULLW}: Multiply Packed 16-bit Integers,
and Store
\c PMULHW mm1,mm2/m64 ; 0F E5 /r [PENT,MMX]
\c PMULLW mm1,mm2/m64 ; 0F D5 /r [PENT,MMX]
\c PMULHW xmm1,xmm2/m128 ; 66 0F E5 /r [WILLAMETTE,SSE2]
\c PMULLW xmm1,xmm2/m128 ; 66 0F D5 /r [WILLAMETTE,SSE2]
\c{PMULxW} takes two packed unsigned 16-bit integer inputs, and
multiplies the values in the inputs, forming doubleword results.
\b \c{PMULHW} then stores the top 16 bits of each doubleword in the
destination (first) operand;
\b \c{PMULLW} stores the bottom 16 bits of each doubleword in the
destination operand.
\S{insPMULUDQ} \i\c{PMULUDQ}: Multiply Packed Unsigned
32-bit Integers, and Store.
\c PMULUDQ mm1,mm2/m64 ; 0F F4 /r [WILLAMETTE,SSE2]
\c PMULUDQ xmm1,xmm2/m128 ; 66 0F F4 /r [WILLAMETTE,SSE2]
\c{PMULUDQ} takes two packed unsigned 32-bit integer inputs, and
multiplies the values in the inputs, forming quadword results. The
source is either an unsigned doubleword in the low doubleword of a
64-bit operand, or it's two unsigned doublewords in the first and
third doublewords of a 128-bit operand. This produces either one or
two 64-bit results, which are stored in the respective quadword
locations of the destination register.
The operation is:
\c dst[0-63] := dst[0-31] * src[0-31];
\c dst[64-127] := dst[64-95] * src[64-95].
\S{insPMVccZB} \i\c{PMVccZB}: MMX Packed Conditional Move
\c PMVZB mmxreg,mem64 ; 0F 58 /r [CYRIX,MMX]
\c PMVNZB mmxreg,mem64 ; 0F 5A /r [CYRIX,MMX]
\c PMVLZB mmxreg,mem64 ; 0F 5B /r [CYRIX,MMX]
\c PMVGEZB mmxreg,mem64 ; 0F 5C /r [CYRIX,MMX]
These instructions, specific to the Cyrix MMX extensions, perform
parallel conditional moves. The two input operands are treated as
vectors of eight bytes. Each byte of the destination (first) operand
is either written from the corresponding byte of the source (second)
operand, or left alone, depending on the value of the byte in the
\e{implied} operand (specified in the same way as \c{PADDSIW}, in
\k{insPADDSIW}).
\b \c{PMVZB} performs each move if the corresponding byte in the
implied operand is zero;
\b \c{PMVNZB} moves if the byte is non-zero;
\b \c{PMVLZB} moves if the byte is less than zero;
\b \c{PMVGEZB} moves if the byte is greater than or equal to zero.
Note that these instructions cannot take a register as their second
source operand.
\S{insPOP} \i\c{POP}: Pop Data from Stack
\c POP reg16 ; o16 58+r [8086]
\c POP reg32 ; o32 58+r [386]
\c POP r/m16 ; o16 8F /0 [8086]
\c POP r/m32 ; o32 8F /0 [386]
\c POP CS ; 0F [8086,UNDOC]
\c POP DS ; 1F [8086]
\c POP ES ; 07 [8086]
\c POP SS ; 17 [8086]
\c POP FS ; 0F A1 [386]
\c POP GS ; 0F A9 [386]
\c{POP} loads a value from the stack (from \c{[SS:SP]} or
\c{[SS:ESP]}) and then increments the stack pointer.
The address-size attribute of the instruction determines whether
\c{SP} or \c{ESP} is used as the stack pointer: to deliberately
override the default given by the \c{BITS} setting, you can use an
\i\c{a16} or \i\c{a32} prefix.
The operand-size attribute of the instruction determines whether the
stack pointer is incremented by 2 or 4: this means that segment
register pops in \c{BITS 32} mode will pop 4 bytes off the stack and
discard the upper two of them. If you need to override that, you can
use an \i\c{o16} or \i\c{o32} prefix.
The above opcode listings give two forms for general-purpose
register pop instructions: for example, \c{POP BX} has the two forms
\c{5B} and \c{8F C3}. NASM will always generate the shorter form
when given \c{POP BX}. NDISASM will disassemble both.
\c{POP CS} is not a documented instruction, and is not supported on
any processor above the 8086 (since they use \c{0Fh} as an opcode
prefix for instruction set extensions). However, at least some 8086
processors do support it, and so NASM generates it for completeness.
\S{insPOPA} \i\c{POPAx}: Pop All General-Purpose Registers
\c POPA ; 61 [186]
\c POPAW ; o16 61 [186]
\c POPAD ; o32 61 [386]
\b \c{POPAW} pops a word from the stack into each of, successively,
\c{DI}, \c{SI}, \c{BP}, nothing (it discards a word from the stack
which was a placeholder for \c{SP}), \c{BX}, \c{DX}, \c{CX} and
\c{AX}. It is intended to reverse the operation of \c{PUSHAW} (see
\k{insPUSHA}), but it ignores the value for \c{SP} that was pushed
on the stack by \c{PUSHAW}.
\b \c{POPAD} pops twice as much data, and places the results in
\c{EDI}, \c{ESI}, \c{EBP}, nothing (placeholder for \c{ESP}),
\c{EBX}, \c{EDX}, \c{ECX} and \c{EAX}. It reverses the operation of
\c{PUSHAD}.
\c{POPA} is an alias mnemonic for either \c{POPAW} or \c{POPAD},
depending on the current \c{BITS} setting.
Note that the registers are popped in reverse order of their numeric
values in opcodes (see \k{iref-rv}).
\S{insPOPF} \i\c{POPFx}: Pop Flags Register
\c POPF ; 9D [8086]
\c POPFW ; o16 9D [8086]
\c POPFD ; o32 9D [386]
\b \c{POPFW} pops a word from the stack and stores it in the bottom 16
bits of the flags register (or the whole flags register, on
processors below a 386).
\b \c{POPFD} pops a doubleword and stores it in the entire flags register.
\c{POPF} is an alias mnemonic for either \c{POPFW} or \c{POPFD},
depending on the current \c{BITS} setting.
See also \c{PUSHF} (\k{insPUSHF}).
\S{insPOR} \i\c{POR}: MMX Bitwise OR
\c POR mm1,mm2/m64 ; 0F EB /r [PENT,MMX]
\c POR xmm1,xmm2/m128 ; 66 0F EB /r [WILLAMETTE,SSE2]
\c{POR} performs a bitwise OR operation between its two operands
(i.e. each bit of the result is 1 if and only if at least one of the
corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.
\S{insPREFETCH} \i\c{PREFETCH}: Prefetch Data Into Caches
\c PREFETCH mem8 ; 0F 0D /0 [PENT,3DNOW]
\c PREFETCHW mem8 ; 0F 0D /1 [PENT,3DNOW]
\c{PREFETCH} and \c{PREFETCHW} fetch the line of data from memory that
contains the specified byte. \c{PREFETCHW} performs differently on the
Athlon to earlier processors.
For more details, see the 3DNow! Technology Manual.
\S{insPREFETCHh} \i\c{PREFETCHh}: Prefetch Data Into Caches
\I\c{PREFETCHNTA} \I\c{PREFETCHT0} \I\c{PREFETCHT1} \I\c{PREFETCHT2}
\c PREFETCHNTA m8 ; 0F 18 /0 [KATMAI]
\c PREFETCHT0 m8 ; 0F 18 /1 [KATMAI]
\c PREFETCHT1 m8 ; 0F 18 /2 [KATMAI]
\c PREFETCHT2 m8 ; 0F 18 /3 [KATMAI]
The \c{PREFETCHh} instructions fetch the line of data from memory
that contains the specified byte. It is placed in the cache
according to rules specified by locality hints \c{h}:
The hints are:
\b \c{T0} (temporal data) - prefetch data into all levels of the
cache hierarchy.
\b \c{T1} (temporal data with respect to first level cache) -
prefetch data into level 2 cache and higher.
\b \c{T2} (temporal data with respect to second level cache) -
prefetch data into level 2 cache and higher.
\b \c{NTA} (non-temporal data with respect to all cache levels) -
prefetch data into non-temporal cache structure and into a
location close to the processor, minimizing cache pollution.
Note that this group of instructions doesn't provide a guarantee
that the data will be in the cache when it is needed. For more
details, see the Intel IA32 Software Developer Manual, Volume 2.
\S{insPSADBW} \i\c{PSADBW}: Packed Sum of Absolute Differences
\c PSADBW mm1,mm2/m64 ; 0F F6 /r [KATMAI,MMX]
\c PSADBW xmm1,xmm2/m128 ; 66 0F F6 /r [WILLAMETTE,SSE2]
\c{PSADBW} The PSADBW instruction computes the absolute value of the
difference of the packed unsigned bytes in the two source operands.
These differences are then summed to produce a word result in the lower
16-bit field of the destination register; the rest of the register is
cleared. The destination operand is an \c{MMX} or an \c{XMM} register.
The source operand can either be a register or a memory operand.
\S{insPSHUFD} \i\c{PSHUFD}: Shuffle Packed Doublewords
\c PSHUFD xmm1,xmm2/m128,imm8 ; 66 0F 70 /r ib [WILLAMETTE,SSE2]
\c{PSHUFD} shuffles the doublewords in the source (second) operand
according to the encoding specified by imm8, and stores the result
in the destination (first) operand.
Bits 0 and 1 of imm8 encode the source position of the doubleword to
be copied to position 0 in the destination operand. Bits 2 and 3
encode for position 1, bits 4 and 5 encode for position 2, and bits
6 and 7 encode for position 3. For example, an encoding of 10 in
bits 0 and 1 of imm8 indicates that the doubleword at bits 64-95 of
the source operand will be copied to bits 0-31 of the destination.
\S{insPSHUFHW} \i\c{PSHUFHW}: Shuffle Packed High Words
\c PSHUFHW xmm1,xmm2/m128,imm8 ; F3 0F 70 /r ib [WILLAMETTE,SSE2]
\c{PSHUFW} shuffles the words in the high quadword of the source
(second) operand according to the encoding specified by imm8, and
stores the result in the high quadword of the destination (first)
operand.
The operation of this instruction is similar to the \c{PSHUFW}
instruction, except that the source and destination are the top
quadword of a 128-bit operand, instead of being 64-bit operands.
The low quadword is copied from the source to the destination
without any changes.
\S{insPSHUFLW} \i\c{PSHUFLW}: Shuffle Packed Low Words
\c PSHUFLW xmm1,xmm2/m128,imm8 ; F2 0F 70 /r ib [WILLAMETTE,SSE2]
\c{PSHUFLW} shuffles the words in the low quadword of the source
(second) operand according to the encoding specified by imm8, and
stores the result in the low quadword of the destination (first)
operand.
The operation of this instruction is similar to the \c{PSHUFW}
instruction, except that the source and destination are the low
quadword of a 128-bit operand, instead of being 64-bit operands.
The high quadword is copied from the source to the destination
without any changes.
\S{insPSHUFW} \i\c{PSHUFW}: Shuffle Packed Words
\c PSHUFW mm1,mm2/m64,imm8 ; 0F 70 /r ib [KATMAI,MMX]
\c{PSHUFW} shuffles the words in the source (second) operand
according to the encoding specified by imm8, and stores the result
in the destination (first) operand.
Bits 0 and 1 of imm8 encode the source position of the word to be
copied to position 0 in the destination operand. Bits 2 and 3 encode
for position 1, bits 4 and 5 encode for position 2, and bits 6 and 7
encode for position 3. For example, an encoding of 10 in bits 0 and 1
of imm8 indicates that the word at bits 32-47 of the source operand
will be copied to bits 0-15 of the destination.
\S{insPSLLD} \i\c{PSLLx}: Packed Data Bit Shift Left Logical
\c PSLLW mm1,mm2/m64 ; 0F F1 /r [PENT,MMX]
\c PSLLW mm,imm8 ; 0F 71 /6 ib [PENT,MMX]
\c PSLLW xmm1,xmm2/m128 ; 66 0F F1 /r [WILLAMETTE,SSE2]
\c PSLLW xmm,imm8 ; 66 0F 71 /6 ib [WILLAMETTE,SSE2]
\c PSLLD mm1,mm2/m64 ; 0F F2 /r [PENT,MMX]
\c PSLLD mm,imm8 ; 0F 72 /6 ib [PENT,MMX]
\c PSLLD xmm1,xmm2/m128 ; 66 0F F2 /r [WILLAMETTE,SSE2]
\c PSLLD xmm,imm8 ; 66 0F 72 /6 ib [WILLAMETTE,SSE2]
\c PSLLQ mm1,mm2/m64 ; 0F F3 /r [PENT,MMX]
\c PSLLQ mm,imm8 ; 0F 73 /6 ib [PENT,MMX]
\c PSLLQ xmm1,xmm2/m128 ; 66 0F F3 /r [WILLAMETTE,SSE2]
\c PSLLQ xmm,imm8 ; 66 0F 73 /6 ib [WILLAMETTE,SSE2]
\c PSLLDQ xmm1,imm8 ; 66 0F 73 /7 ib [WILLAMETTE,SSE2]
\c{PSLLx} performs logical left shifts of the data elements in the
destination (first) operand, moving each bit in the separate elements
left by the number of bits specified in the source (second) operand,
clearing the low-order bits as they are vacated. \c{PSLLDQ}
shifts bytes, not bits.
\b \c{PSLLW} shifts word sized elements.
\b \c{PSLLD} shifts doubleword sized elements.
\b \c{PSLLQ} shifts quadword sized elements.
\b \c{PSLLDQ} shifts double quadword sized elements.
\S{insPSRAD} \i\c{PSRAx}: Packed Data Bit Shift Right Arithmetic
\c PSRAW mm1,mm2/m64 ; 0F E1 /r [PENT,MMX]
\c PSRAW mm,imm8 ; 0F 71 /4 ib [PENT,MMX]
\c PSRAW xmm1,xmm2/m128 ; 66 0F E1 /r [WILLAMETTE,SSE2]
\c PSRAW xmm,imm8 ; 66 0F 71 /4 ib [WILLAMETTE,SSE2]
\c PSRAD mm1,mm2/m64 ; 0F E2 /r [PENT,MMX]
\c PSRAD mm,imm8 ; 0F 72 /4 ib [PENT,MMX]
\c PSRAD xmm1,xmm2/m128 ; 66 0F E2 /r [WILLAMETTE,SSE2]
\c PSRAD xmm,imm8 ; 66 0F 72 /4 ib [WILLAMETTE,SSE2]
\c{PSRAx} performs arithmetic right shifts of the data elements in the
destination (first) operand, moving each bit in the separate elements
right by the number of bits specified in the source (second) operand,
setting the high-order bits to the value of the original sign bit.
\b \c{PSRAW} shifts word sized elements.
\b \c{PSRAD} shifts doubleword sized elements.
\S{insPSRLD} \i\c{PSRLx}: Packed Data Bit Shift Right Logical
\c PSRLW mm1,mm2/m64 ; 0F D1 /r [PENT,MMX]
\c PSRLW mm,imm8 ; 0F 71 /2 ib [PENT,MMX]
\c PSRLW xmm1,xmm2/m128 ; 66 0F D1 /r [WILLAMETTE,SSE2]
\c PSRLW xmm,imm8 ; 66 0F 71 /2 ib [WILLAMETTE,SSE2]
\c PSRLD mm1,mm2/m64 ; 0F D2 /r [PENT,MMX]
\c PSRLD mm,imm8 ; 0F 72 /2 ib [PENT,MMX]
\c PSRLD xmm1,xmm2/m128 ; 66 0F D2 /r [WILLAMETTE,SSE2]
\c PSRLD xmm,imm8 ; 66 0F 72 /2 ib [WILLAMETTE,SSE2]
\c PSRLQ mm1,mm2/m64 ; 0F D3 /r [PENT,MMX]
\c PSRLQ mm,imm8 ; 0F 73 /2 ib [PENT,MMX]
\c PSRLQ xmm1,xmm2/m128 ; 66 0F D3 /r [WILLAMETTE,SSE2]
\c PSRLQ xmm,imm8 ; 66 0F 73 /2 ib [WILLAMETTE,SSE2]
\c PSRLDQ xmm1,imm8 ; 66 0F 73 /3 ib [WILLAMETTE,SSE2]
\c{PSRLx} performs logical right shifts of the data elements in the
destination (first) operand, moving each bit in the separate elements
right by the number of bits specified in the source (second) operand,
clearing the high-order bits as they are vacated. \c{PSRLDQ}
shifts bytes, not bits.
\b \c{PSRLW} shifts word sized elements.
\b \c{PSRLD} shifts doubleword sized elements.
\b \c{PSRLQ} shifts quadword sized elements.
\b \c{PSRLDQ} shifts double quadword sized elements.
\S{insPSUBB} \i\c{PSUBx}: Subtract Packed Integers
\c PSUBB mm1,mm2/m64 ; 0F F8 /r [PENT,MMX]
\c PSUBW mm1,mm2/m64 ; 0F F9 /r [PENT,MMX]
\c PSUBD mm1,mm2/m64 ; 0F FA /r [PENT,MMX]
\c PSUBQ mm1,mm2/m64 ; 0F FB /r [WILLAMETTE,SSE2]
\c PSUBB xmm1,xmm2/m128 ; 66 0F F8 /r [WILLAMETTE,SSE2]
\c PSUBW xmm1,xmm2/m128 ; 66 0F F9 /r [WILLAMETTE,SSE2]
\c PSUBD xmm1,xmm2/m128 ; 66 0F FA /r [WILLAMETTE,SSE2]
\c PSUBQ xmm1,xmm2/m128 ; 66 0F FB /r [WILLAMETTE,SSE2]
\c{PSUBx} subtracts packed integers in the source operand from those
in the destination operand. It doesn't differentiate between signed
and unsigned integers, and doesn't set any of the flags.
\b \c{PSUBB} operates on byte sized elements.
\b \c{PSUBW} operates on word sized elements.
\b \c{PSUBD} operates on doubleword sized elements.
\b \c{PSUBQ} operates on quadword sized elements.
\S{insPSUBSB} \i\c{PSUBSxx}, \i\c{PSUBUSx}: Subtract Packed Integers With Saturation
\c PSUBSB mm1,mm2/m64 ; 0F E8 /r [PENT,MMX]
\c PSUBSW mm1,mm2/m64 ; 0F E9 /r [PENT,MMX]
\c PSUBSB xmm1,xmm2/m128 ; 66 0F E8 /r [WILLAMETTE,SSE2]
\c PSUBSW xmm1,xmm2/m128 ; 66 0F E9 /r [WILLAMETTE,SSE2]
\c PSUBUSB mm1,mm2/m64 ; 0F D8 /r [PENT,MMX]
\c PSUBUSW mm1,mm2/m64 ; 0F D9 /r [PENT,MMX]
\c PSUBUSB xmm1,xmm2/m128 ; 66 0F D8 /r [WILLAMETTE,SSE2]
\c PSUBUSW xmm1,xmm2/m128 ; 66 0F D9 /r [WILLAMETTE,SSE2]
\c{PSUBSx} and \c{PSUBUSx} subtracts packed integers in the source
operand from those in the destination operand, and use saturation for
results that are outside the range supported by the destination operand.
\b \c{PSUBSB} operates on signed bytes, and uses signed saturation on the
results.
\b \c{PSUBSW} operates on signed words, and uses signed saturation on the
results.
\b \c{PSUBUSB} operates on unsigned bytes, and uses signed saturation on
the results.
\b \c{PSUBUSW} operates on unsigned words, and uses signed saturation on
the results.
\S{insPSUBSIW} \i\c{PSUBSIW}: MMX Packed Subtract with Saturation to
Implied Destination
\c PSUBSIW mm1,mm2/m64 ; 0F 55 /r [CYRIX,MMX]
\c{PSUBSIW}, specific to the Cyrix extensions to the MMX instruction
set, performs the same function as \c{PSUBSW}, except that the
result is not placed in the register specified by the first operand,
but instead in the implied destination register, specified as for
\c{PADDSIW} (\k{insPADDSIW}).
\S{insPSWAPD} \i\c{PSWAPD}: Swap Packed Data
\I\c{PSWAPW}
\c PSWAPD mm1,mm2/m64 ; 0F 0F /r BB [PENT,3DNOW]
\c{PSWAPD} swaps the packed doublewords in the source operand, and
stores the result in the destination operand.
In the \c{K6-2} and \c{K6-III} processors, this opcode uses the
mnemonic \c{PSWAPW}, and it swaps the order of words when copying
from the source to the destination.
The operation in the \c{K6-2} and \c{K6-III} processors is
\c dst[0-15] = src[48-63];
\c dst[16-31] = src[32-47];
\c dst[32-47] = src[16-31];
\c dst[48-63] = src[0-15].
The operation in the \c{K6-x+}, \c{ATHLON} and later processors is:
\c dst[0-31] = src[32-63];
\c dst[32-63] = src[0-31].
\S{insPUNPCKHBW} \i\c{PUNPCKxxx}: Unpack and Interleave Data
\c PUNPCKHBW mm1,mm2/m64 ; 0F 68 /r [PENT,MMX]
\c PUNPCKHWD mm1,mm2/m64 ; 0F 69 /r [PENT,MMX]
\c PUNPCKHDQ mm1,mm2/m64 ; 0F 6A /r [PENT,MMX]
\c PUNPCKHBW xmm1,xmm2/m128 ; 66 0F 68 /r [WILLAMETTE,SSE2]
\c PUNPCKHWD xmm1,xmm2/m128 ; 66 0F 69 /r [WILLAMETTE,SSE2]
\c PUNPCKHDQ xmm1,xmm2/m128 ; 66 0F 6A /r [WILLAMETTE,SSE2]
\c PUNPCKHQDQ xmm1,xmm2/m128 ; 66 0F 6D /r [WILLAMETTE,SSE2]
\c PUNPCKLBW mm1,mm2/m32 ; 0F 60 /r [PENT,MMX]
\c PUNPCKLWD mm1,mm2/m32 ; 0F 61 /r [PENT,MMX]
\c PUNPCKLDQ mm1,mm2/m32 ; 0F 62 /r [PENT,MMX]
\c PUNPCKLBW xmm1,xmm2/m128 ; 66 0F 60 /r [WILLAMETTE,SSE2]
\c PUNPCKLWD xmm1,xmm2/m128 ; 66 0F 61 /r [WILLAMETTE,SSE2]
\c PUNPCKLDQ xmm1,xmm2/m128 ; 66 0F 62 /r [WILLAMETTE,SSE2]
\c PUNPCKLQDQ xmm1,xmm2/m128 ; 66 0F 6C /r [WILLAMETTE,SSE2]
\c{PUNPCKxx} all treat their operands as vectors, and produce a new
vector generated by interleaving elements from the two inputs. The
\c{PUNPCKHxx} instructions start by throwing away the bottom half of
each input operand, and the \c{PUNPCKLxx} instructions throw away
the top half.
The remaining elements, are then interleaved into the destination,
alternating elements from the second (source) operand and the first
(destination) operand: so the leftmost part of each element in the
result always comes from the second operand, and the rightmost from
the destination.
\b \c{PUNPCKxBW} works a byte at a time, producing word sized output
elements.
\b \c{PUNPCKxWD} works a word at a time, producing doubleword sized
output elements.
\b \c{PUNPCKxDQ} works a doubleword at a time, producing quadword sized
output elements.
\b \c{PUNPCKxQDQ} works a quadword at a time, producing double quadword
sized output elements.
So, for example, for \c{MMX} operands, if the first operand held
\c{0x7A6A5A4A3A2A1A0A} and the second held \c{0x7B6B5B4B3B2B1B0B},
then:
\b \c{PUNPCKHBW} would return \c{0x7B7A6B6A5B5A4B4A}.
\b \c{PUNPCKHWD} would return \c{0x7B6B7A6A5B4B5A4A}.
\b \c{PUNPCKHDQ} would return \c{0x7B6B5B4B7A6A5A4A}.
\b \c{PUNPCKLBW} would return \c{0x3B3A2B2A1B1A0B0A}.
\b \c{PUNPCKLWD} would return \c{0x3B2B3A2A1B0B1A0A}.
\b \c{PUNPCKLDQ} would return \c{0x3B2B1B0B3A2A1A0A}.
\S{insPUSH} \i\c{PUSH}: Push Data on Stack
\c PUSH reg16 ; o16 50+r [8086]
\c PUSH reg32 ; o32 50+r [386]
\c PUSH r/m16 ; o16 FF /6 [8086]
\c PUSH r/m32 ; o32 FF /6 [386]
\c PUSH CS ; 0E [8086]
\c PUSH DS ; 1E [8086]
\c PUSH ES ; 06 [8086]
\c PUSH SS ; 16 [8086]
\c PUSH FS ; 0F A0 [386]
\c PUSH GS ; 0F A8 [386]
\c PUSH imm8 ; 6A ib [186]
\c PUSH imm16 ; o16 68 iw [186]
\c PUSH imm32 ; o32 68 id [386]
\c{PUSH} decrements the stack pointer (\c{SP} or \c{ESP}) by 2 or 4,
and then stores the given value at \c{[SS:SP]} or \c{[SS:ESP]}.
The address-size attribute of the instruction determines whether
\c{SP} or \c{ESP} is used as the stack pointer: to deliberately
override the default given by the \c{BITS} setting, you can use an
\i\c{a16} or \i\c{a32} prefix.
The operand-size attribute of the instruction determines whether the
stack pointer is decremented by 2 or 4: this means that segment
register pushes in \c{BITS 32} mode will push 4 bytes on the stack,
of which the upper two are undefined. If you need to override that,
you can use an \i\c{o16} or \i\c{o32} prefix.
The above opcode listings give two forms for general-purpose
\i{register push} instructions: for example, \c{PUSH BX} has the two
forms \c{53} and \c{FF F3}. NASM will always generate the shorter
form when given \c{PUSH BX}. NDISASM will disassemble both.
Unlike the undocumented and barely supported \c{POP CS}, \c{PUSH CS}
is a perfectly valid and sensible instruction, supported on all
processors.
The instruction \c{PUSH SP} may be used to distinguish an 8086 from
later processors: on an 8086, the value of \c{SP} stored is the
value it has \e{after} the push instruction, whereas on later
processors it is the value \e{before} the push instruction.
\S{insPUSHA} \i\c{PUSHAx}: Push All General-Purpose Registers
\c PUSHA ; 60 [186]
\c PUSHAD ; o32 60 [386]
\c PUSHAW ; o16 60 [186]
\c{PUSHAW} pushes, in succession, \c{AX}, \c{CX}, \c{DX}, \c{BX},
\c{SP}, \c{BP}, \c{SI} and \c{DI} on the stack, decrementing the
stack pointer by a total of 16.
\c{PUSHAD} pushes, in succession, \c{EAX}, \c{ECX}, \c{EDX},
\c{EBX}, \c{ESP}, \c{EBP}, \c{ESI} and \c{EDI} on the stack,
decrementing the stack pointer by a total of 32.
In both cases, the value of \c{SP} or \c{ESP} pushed is its
\e{original} value, as it had before the instruction was executed.
\c{PUSHA} is an alias mnemonic for either \c{PUSHAW} or \c{PUSHAD},
depending on the current \c{BITS} setting.
Note that the registers are pushed in order of their numeric values
in opcodes (see \k{iref-rv}).
See also \c{POPA} (\k{insPOPA}).
\S{insPUSHF} \i\c{PUSHFx}: Push Flags Register
\c PUSHF ; 9C [8086]
\c PUSHFD ; o32 9C [386]
\c PUSHFW ; o16 9C [8086]
\b \c{PUSHFW} pushes the bottom 16 bits of the flags register
(or the whole flags register, on processors below a 386) onto
the stack.
\b \c{PUSHFD} pushes the entire flags register onto the stack.
\c{PUSHF} is an alias mnemonic for either \c{PUSHFW} or \c{PUSHFD},
depending on the current \c{BITS} setting.
See also \c{POPF} (\k{insPOPF}).
\S{insPXOR} \i\c{PXOR}: MMX Bitwise XOR
\c PXOR mm1,mm2/m64 ; 0F EF /r [PENT,MMX]
\c PXOR xmm1,xmm2/m128 ; 66 0F EF /r [WILLAMETTE,SSE2]
\c{PXOR} performs a bitwise XOR operation between its two operands
(i.e. each bit of the result is 1 if and only if exactly one of the
corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.
\S{insRCL} \i\c{RCL}, \i\c{RCR}: Bitwise Rotate through Carry Bit
\c RCL r/m8,1 ; D0 /2 [8086]
\c RCL r/m8,CL ; D2 /2 [8086]
\c RCL r/m8,imm8 ; C0 /2 ib [186]
\c RCL r/m16,1 ; o16 D1 /2 [8086]
\c RCL r/m16,CL ; o16 D3 /2 [8086]
\c RCL r/m16,imm8 ; o16 C1 /2 ib [186]
\c RCL r/m32,1 ; o32 D1 /2 [386]
\c RCL r/m32,CL ; o32 D3 /2 [386]
\c RCL r/m32,imm8 ; o32 C1 /2 ib [386]
\c RCR r/m8,1 ; D0 /3 [8086]
\c RCR r/m8,CL ; D2 /3 [8086]
\c RCR r/m8,imm8 ; C0 /3 ib [186]
\c RCR r/m16,1 ; o16 D1 /3 [8086]
\c RCR r/m16,CL ; o16 D3 /3 [8086]
\c RCR r/m16,imm8 ; o16 C1 /3 ib [186]
\c RCR r/m32,1 ; o32 D1 /3 [386]
\c RCR r/m32,CL ; o32 D3 /3 [386]
\c RCR r/m32,imm8 ; o32 C1 /3 ib [386]
\c{RCL} and \c{RCR} perform a 9-bit, 17-bit or 33-bit bitwise
rotation operation, involving the given source/destination (first)
operand and the carry bit. Thus, for example, in the operation
\c{RCL AL,1}, a 9-bit rotation is performed in which \c{AL} is
shifted left by 1, the top bit of \c{AL} moves into the carry flag,
and the original value of the carry flag is placed in the low bit of
\c{AL}.
The number of bits to rotate by is given by the second operand. Only
the bottom five bits of the rotation count are considered by
processors above the 8086.
You can force the longer (286 and upwards, beginning with a \c{C1}
byte) form of \c{RCL foo,1} by using a \c{BYTE} prefix: \c{RCL
foo,BYTE 1}. Similarly with \c{RCR}.
\S{insRCPPS} \i\c{RCPPS}: Packed Single-Precision FP Reciprocal
\c RCPPS xmm1,xmm2/m128 ; 0F 53 /r [KATMAI,SSE]
\c{RCPPS} returns an approximation of the reciprocal of the packed
single-precision FP values from xmm2/m128. The maximum error for this
approximation is: |Error| <= 1.5 x 2^-12
\S{insRCPSS} \i\c{RCPSS}: Scalar Single-Precision FP Reciprocal
\c RCPSS xmm1,xmm2/m128 ; F3 0F 53 /r [KATMAI,SSE]
\c{RCPSS} returns an approximation of the reciprocal of the lower
single-precision FP value from xmm2/m32; the upper three fields are
passed through from xmm1. The maximum error for this approximation is:
|Error| <= 1.5 x 2^-12
\S{insRDMSR} \i\c{RDMSR}: Read Model-Specific Registers
\c RDMSR ; 0F 32 [PENT,PRIV]
\c{RDMSR} reads the processor Model-Specific Register (MSR) whose
index is stored in \c{ECX}, and stores the result in \c{EDX:EAX}.
See also \c{WRMSR} (\k{insWRMSR}).
\S{insRDPMC} \i\c{RDPMC}: Read Performance-Monitoring Counters
\c RDPMC ; 0F 33 [P6]
\c{RDPMC} reads the processor performance-monitoring counter whose
index is stored in \c{ECX}, and stores the result in \c{EDX:EAX}.
This instruction is available on P6 and later processors and on MMX
class processors.
\S{insRDSHR} \i\c{RDSHR}: Read SMM Header Pointer Register
\c RDSHR r/m32 ; 0F 36 /0 [386,CYRIX,SMM]
\c{RDSHR} reads the contents of the SMM header pointer register and
saves it to the destination operand, which can be either a 32 bit
memory location or a 32 bit register.
See also \c{WRSHR} (\k{insWRSHR}).
\S{insRDTSC} \i\c{RDTSC}: Read Time-Stamp Counter
\c RDTSC ; 0F 31 [PENT]
\c{RDTSC} reads the processor's time-stamp counter into \c{EDX:EAX}.
\S{insRET} \i\c{RET}, \i\c{RETF}, \i\c{RETN}: Return from Procedure Call
\c RET ; C3 [8086]
\c RET imm16 ; C2 iw [8086]
\c RETF ; CB [8086]
\c RETF imm16 ; CA iw [8086]
\c RETN ; C3 [8086]
\c RETN imm16 ; C2 iw [8086]
\b \c{RET}, and its exact synonym \c{RETN}, pop \c{IP} or \c{EIP} from
the stack and transfer control to the new address. Optionally, if a
numeric second operand is provided, they increment the stack pointer
by a further \c{imm16} bytes after popping the return address.
\b \c{RETF} executes a far return: after popping \c{IP}/\c{EIP}, it
then pops \c{CS}, and \e{then} increments the stack pointer by the
optional argument if present.
\S{insROL} \i\c{ROL}, \i\c{ROR}: Bitwise Rotate
\c ROL r/m8,1 ; D0 /0 [8086]
\c ROL r/m8,CL ; D2 /0 [8086]
\c ROL r/m8,imm8 ; C0 /0 ib [186]
\c ROL r/m16,1 ; o16 D1 /0 [8086]
\c ROL r/m16,CL ; o16 D3 /0 [8086]
\c ROL r/m16,imm8 ; o16 C1 /0 ib [186]
\c ROL r/m32,1 ; o32 D1 /0 [386]
\c ROL r/m32,CL ; o32 D3 /0 [386]
\c ROL r/m32,imm8 ; o32 C1 /0 ib [386]
\c ROR r/m8,1 ; D0 /1 [8086]
\c ROR r/m8,CL ; D2 /1 [8086]
\c ROR r/m8,imm8 ; C0 /1 ib [186]
\c ROR r/m16,1 ; o16 D1 /1 [8086]
\c ROR r/m16,CL ; o16 D3 /1 [8086]
\c ROR r/m16,imm8 ; o16 C1 /1 ib [186]
\c ROR r/m32,1 ; o32 D1 /1 [386]
\c ROR r/m32,CL ; o32 D3 /1 [386]
\c ROR r/m32,imm8 ; o32 C1 /1 ib [386]
\c{ROL} and \c{ROR} perform a bitwise rotation operation on the given
source/destination (first) operand. Thus, for example, in the
operation \c{ROL AL,1}, an 8-bit rotation is performed in which
\c{AL} is shifted left by 1 and the original top bit of \c{AL} moves
round into the low bit.
The number of bits to rotate by is given by the second operand. Only
the bottom five bits of the rotation count are considered by processors
above the 8086.
You can force the longer (286 and upwards, beginning with a \c{C1}
byte) form of \c{ROL foo,1} by using a \c{BYTE} prefix: \c{ROL
foo,BYTE 1}. Similarly with \c{ROR}.
\S{insRSDC} \i\c{RSDC}: Restore Segment Register and Descriptor
\c RSDC segreg,m80 ; 0F 79 /r [486,CYRIX,SMM]
\c{RSDC} restores a segment register (DS, ES, FS, GS, or SS) from mem80,
and sets up its descriptor.
\S{insRSLDT} \i\c{RSLDT}: Restore Segment Register and Descriptor
\c RSLDT m80 ; 0F 7B /0 [486,CYRIX,SMM]
\c{RSLDT} restores the Local Descriptor Table (LDTR) from mem80.
\S{insRSM} \i\c{RSM}: Resume from System-Management Mode
\c RSM ; 0F AA [PENT]
\c{RSM} returns the processor to its normal operating mode when it
was in System-Management Mode.
\S{insRSQRTPS} \i\c{RSQRTPS}: Packed Single-Precision FP Square Root Reciprocal
\c RSQRTPS xmm1,xmm2/m128 ; 0F 52 /r [KATMAI,SSE]
\c{RSQRTPS} computes the approximate reciprocals of the square
roots of the packed single-precision floating-point values in the
source and stores the results in xmm1. The maximum error for this
approximation is: |Error| <= 1.5 x 2^-12
\S{insRSQRTSS} \i\c{RSQRTSS}: Scalar Single-Precision FP Square Root Reciprocal
\c RSQRTSS xmm1,xmm2/m128 ; F3 0F 52 /r [KATMAI,SSE]
\c{RSQRTSS} returns an approximation of the reciprocal of the
square root of the lowest order single-precision FP value from
the source, and stores it in the low doubleword of the destination
register. The upper three fields of xmm1 are preserved. The maximum
error for this approximation is: |Error| <= 1.5 x 2^-12
\S{insRSTS} \i\c{RSTS}: Restore TSR and Descriptor
\c RSTS m80 ; 0F 7D /0 [486,CYRIX,SMM]
\c{RSTS} restores Task State Register (TSR) from mem80.
\S{insSAHF} \i\c{SAHF}: Store AH to Flags
\c SAHF ; 9E [8086]
\c{SAHF} sets the low byte of the flags word according to the
contents of the \c{AH} register.
The operation of \c{SAHF} is:
\c AH --> SF:ZF:0:AF:0:PF:1:CF
See also \c{LAHF} (\k{insLAHF}).
\S{insSAL} \i\c{SAL}, \i\c{SAR}: Bitwise Arithmetic Shifts
\c SAL r/m8,1 ; D0 /4 [8086]
\c SAL r/m8,CL ; D2 /4 [8086]
\c SAL r/m8,imm8 ; C0 /4 ib [186]
\c SAL r/m16,1 ; o16 D1 /4 [8086]
\c SAL r/m16,CL ; o16 D3 /4 [8086]
\c SAL r/m16,imm8 ; o16 C1 /4 ib [186]
\c SAL r/m32,1 ; o32 D1 /4 [386]
\c SAL r/m32,CL ; o32 D3 /4 [386]
\c SAL r/m32,imm8 ; o32 C1 /4 ib [386]
\c SAR r/m8,1 ; D0 /7 [8086]
\c SAR r/m8,CL ; D2 /7 [8086]
\c SAR r/m8,imm8 ; C0 /7 ib [186]
\c SAR r/m16,1 ; o16 D1 /7 [8086]
\c SAR r/m16,CL ; o16 D3 /7 [8086]
\c SAR r/m16,imm8 ; o16 C1 /7 ib [186]
\c SAR r/m32,1 ; o32 D1 /7 [386]
\c SAR r/m32,CL ; o32 D3 /7 [386]
\c SAR r/m32,imm8 ; o32 C1 /7 ib [386]
\c{SAL} and \c{SAR} perform an arithmetic shift operation on the given
source/destination (first) operand. The vacated bits are filled with
zero for \c{SAL}, and with copies of the original high bit of the
source operand for \c{SAR}.
\c{SAL} is a synonym for \c{SHL} (see \k{insSHL}). NASM will
assemble either one to the same code, but NDISASM will always
disassemble that code as \c{SHL}.
The number of bits to shift by is given by the second operand. Only
the bottom five bits of the shift count are considered by processors
above the 8086.
You can force the longer (286 and upwards, beginning with a \c{C1}
byte) form of \c{SAL foo,1} by using a \c{BYTE} prefix: \c{SAL
foo,BYTE 1}. Similarly with \c{SAR}.
\S{insSALC} \i\c{SALC}: Set AL from Carry Flag
\c SALC ; D6 [8086,UNDOC]
\c{SALC} is an early undocumented instruction similar in concept to
\c{SETcc} (\k{insSETcc}). Its function is to set \c{AL} to zero if
the carry flag is clear, or to \c{0xFF} if it is set.
\S{insSBB} \i\c{SBB}: Subtract with Borrow
\c SBB r/m8,reg8 ; 18 /r [8086]
\c SBB r/m16,reg16 ; o16 19 /r [8086]
\c SBB r/m32,reg32 ; o32 19 /r [386]
\c SBB reg8,r/m8 ; 1A /r [8086]
\c SBB reg16,r/m16 ; o16 1B /r [8086]
\c SBB reg32,r/m32 ; o32 1B /r [386]
\c SBB r/m8,imm8 ; 80 /3 ib [8086]
\c SBB r/m16,imm16 ; o16 81 /3 iw [8086]
\c SBB r/m32,imm32 ; o32 81 /3 id [386]
\c SBB r/m16,imm8 ; o16 83 /3 ib [8086]
\c SBB r/m32,imm8 ; o32 83 /3 ib [386]
\c SBB AL,imm8 ; 1C ib [8086]
\c SBB AX,imm16 ; o16 1D iw [8086]
\c SBB EAX,imm32 ; o32 1D id [386]
\c{SBB} performs integer subtraction: it subtracts its second
operand, plus the value of the carry flag, from its first, and
leaves the result in its destination (first) operand. The flags are
set according to the result of the operation: in particular, the
carry flag is affected and can be used by a subsequent \c{SBB}
instruction.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
To subtract one number from another without also subtracting the
contents of the carry flag, use \c{SUB} (\k{insSUB}).
\S{insSCASB} \i\c{SCASB}, \i\c{SCASW}, \i\c{SCASD}: Scan String
\c SCASB ; AE [8086]
\c SCASW ; o16 AF [8086]
\c SCASD ; o32 AF [386]
\c{SCASB} compares the byte in \c{AL} with the byte at \c{[ES:DI]}
or \c{[ES:EDI]}, and sets the flags accordingly. It then increments
or decrements (depending on the direction flag: increments if the
flag is clear, decrements if it is set) \c{DI} (or \c{EDI}).
The register used is \c{DI} if the address size is 16 bits, and
\c{EDI} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
Segment override prefixes have no effect for this instruction: the
use of \c{ES} for the load from \c{[DI]} or \c{[EDI]} cannot be
overridden.
\c{SCASW} and \c{SCASD} work in the same way, but they compare a
word to \c{AX} or a doubleword to \c{EAX} instead of a byte to
\c{AL}, and increment or decrement the addressing registers by 2 or
4 instead of 1.
The \c{REPE} and \c{REPNE} prefixes (equivalently, \c{REPZ} and
\c{REPNZ}) may be used to repeat the instruction up to \c{CX} (or
\c{ECX} - again, the address size chooses which) times until the
first unequal or equal byte is found.
\S{insSETcc} \i\c{SETcc}: Set Register from Condition
\c SETcc r/m8 ; 0F 90+cc /2 [386]
\c{SETcc} sets the given 8-bit operand to zero if its condition is
not satisfied, and to 1 if it is.
\S{insSFENCE} \i\c{SFENCE}: Store Fence
\c SFENCE ; 0F AE /7 [KATMAI]
\c{SFENCE} performs a serialising operation on all writes to memory
that were issued before the \c{SFENCE} instruction. This guarantees that
all memory writes before the \c{SFENCE} instruction are visible before any
writes after the \c{SFENCE} instruction.
\c{SFENCE} is ordered respective to other \c{SFENCE} instruction, \c{MFENCE},
any memory write and any other serialising instruction (such as \c{CPUID}).
Weakly ordered memory types can be used to achieve higher processor
performance through such techniques as out-of-order issue,
write-combining, and write-collapsing. The degree to which a consumer
of data recognizes or knows that the data is weakly ordered varies
among applications and may be unknown to the producer of this data.
The \c{SFENCE} instruction provides a performance-efficient way of
insuring store ordering between routines that produce weakly-ordered
results and routines that consume this data.
\c{SFENCE} uses the following ModRM encoding:
\c Mod (7:6) = 11B
\c Reg/Opcode (5:3) = 111B
\c R/M (2:0) = 000B
All other ModRM encodings are defined to be reserved, and use
of these encodings risks incompatibility with future processors.
See also \c{LFENCE} (\k{insLFENCE}) and \c{MFENCE} (\k{insMFENCE}).
\S{insSGDT} \i\c{SGDT}, \i\c{SIDT}, \i\c{SLDT}: Store Descriptor Table Pointers
\c SGDT mem ; 0F 01 /0 [286,PRIV]
\c SIDT mem ; 0F 01 /1 [286,PRIV]
\c SLDT r/m16 ; 0F 00 /0 [286,PRIV]
\c{SGDT} and \c{SIDT} both take a 6-byte memory area as an operand:
they store the contents of the GDTR (global descriptor table
register) or IDTR (interrupt descriptor table register) into that
area as a 32-bit linear address and a 16-bit size limit from that
area (in that order). These are the only instructions which directly
use \e{linear} addresses, rather than segment/offset pairs.
\c{SLDT} stores the segment selector corresponding to the LDT (local
descriptor table) into the given operand.
See also \c{LGDT}, \c{LIDT} and \c{LLDT} (\k{insLGDT}).
\S{insSHL} \i\c{SHL}, \i\c{SHR}: Bitwise Logical Shifts
\c SHL r/m8,1 ; D0 /4 [8086]
\c SHL r/m8,CL ; D2 /4 [8086]
\c SHL r/m8,imm8 ; C0 /4 ib [186]
\c SHL r/m16,1 ; o16 D1 /4 [8086]
\c SHL r/m16,CL ; o16 D3 /4 [8086]
\c SHL r/m16,imm8 ; o16 C1 /4 ib [186]
\c SHL r/m32,1 ; o32 D1 /4 [386]
\c SHL r/m32,CL ; o32 D3 /4 [386]
\c SHL r/m32,imm8 ; o32 C1 /4 ib [386]
\c SHR r/m8,1 ; D0 /5 [8086]
\c SHR r/m8,CL ; D2 /5 [8086]
\c SHR r/m8,imm8 ; C0 /5 ib [186]
\c SHR r/m16,1 ; o16 D1 /5 [8086]
\c SHR r/m16,CL ; o16 D3 /5 [8086]
\c SHR r/m16,imm8 ; o16 C1 /5 ib [186]
\c SHR r/m32,1 ; o32 D1 /5 [386]
\c SHR r/m32,CL ; o32 D3 /5 [386]
\c SHR r/m32,imm8 ; o32 C1 /5 ib [386]
\c{SHL} and \c{SHR} perform a logical shift operation on the given
source/destination (first) operand. The vacated bits are filled with
zero.
A synonym for \c{SHL} is \c{SAL} (see \k{insSAL}). NASM will
assemble either one to the same code, but NDISASM will always
disassemble that code as \c{SHL}.
The number of bits to shift by is given by the second operand. Only
the bottom five bits of the shift count are considered by processors
above the 8086.
You can force the longer (286 and upwards, beginning with a \c{C1}
byte) form of \c{SHL foo,1} by using a \c{BYTE} prefix: \c{SHL
foo,BYTE 1}. Similarly with \c{SHR}.
\S{insSHLD} \i\c{SHLD}, \i\c{SHRD}: Bitwise Double-Precision Shifts
\c SHLD r/m16,reg16,imm8 ; o16 0F A4 /r ib [386]
\c SHLD r/m16,reg32,imm8 ; o32 0F A4 /r ib [386]
\c SHLD r/m16,reg16,CL ; o16 0F A5 /r [386]
\c SHLD r/m16,reg32,CL ; o32 0F A5 /r [386]
\c SHRD r/m16,reg16,imm8 ; o16 0F AC /r ib [386]
\c SHRD r/m32,reg32,imm8 ; o32 0F AC /r ib [386]
\c SHRD r/m16,reg16,CL ; o16 0F AD /r [386]
\c SHRD r/m32,reg32,CL ; o32 0F AD /r [386]
\b \c{SHLD} performs a double-precision left shift. It notionally
places its second operand to the right of its first, then shifts
the entire bit string thus generated to the left by a number of
bits specified in the third operand. It then updates only the
\e{first} operand according to the result of this. The second
operand is not modified.
\b \c{SHRD} performs the corresponding right shift: it notionally
places the second operand to the \e{left} of the first, shifts the
whole bit string right, and updates only the first operand.
For example, if \c{EAX} holds \c{0x01234567} and \c{EBX} holds
\c{0x89ABCDEF}, then the instruction \c{SHLD EAX,EBX,4} would update
\c{EAX} to hold \c{0x12345678}. Under the same conditions, \c{SHRD
EAX,EBX,4} would update \c{EAX} to hold \c{0xF0123456}.
The number of bits to shift by is given by the third operand. Only
the bottom five bits of the shift count are considered.
\S{insSHUFPD} \i\c{SHUFPD}: Shuffle Packed Double-Precision FP Values
\c SHUFPD xmm1,xmm2/m128,imm8 ; 66 0F C6 /r ib [WILLAMETTE,SSE2]
\c{SHUFPD} moves one of the packed double-precision FP values from
the destination operand into the low quadword of the destination
operand; the upper quadword is generated by moving one of the
double-precision FP values from the source operand into the
destination. The select (third) operand selects which of the values
are moved to the destination register.
The select operand is an 8-bit immediate: bit 0 selects which value
is moved from the destination operand to the result (where 0 selects
the low quadword and 1 selects the high quadword) and bit 1 selects
which value is moved from the source operand to the result.
Bits 2 through 7 of the shuffle operand are reserved.
\S{insSHUFPS} \i\c{SHUFPS}: Shuffle Packed Single-Precision FP Values
\c SHUFPS xmm1,xmm2/m128,imm8 ; 0F C6 /r ib [KATMAI,SSE]
\c{SHUFPS} moves two of the packed single-precision FP values from
the destination operand into the low quadword of the destination
operand; the upper quadword is generated by moving two of the
single-precision FP values from the source operand into the
destination. The select (third) operand selects which of the
values are moved to the destination register.
The select operand is an 8-bit immediate: bits 0 and 1 select the
value to be moved from the destination operand the low doubleword of
the result, bits 2 and 3 select the value to be moved from the
destination operand the second doubleword of the result, bits 4 and
5 select the value to be moved from the source operand the third
doubleword of the result, and bits 6 and 7 select the value to be
moved from the source operand to the high doubleword of the result.
\S{insSMI} \i\c{SMI}: System Management Interrupt
\c SMI ; F1 [386,UNDOC]
\c{SMI} puts some AMD processors into SMM mode. It is available on some
386 and 486 processors, and is only available when DR7 bit 12 is set,
otherwise it generates an Int 1.
\S{insSMINT} \i\c{SMINT}, \i\c{SMINTOLD}: Software SMM Entry (CYRIX)
\c SMINT ; 0F 38 [PENT,CYRIX]
\c SMINTOLD ; 0F 7E [486,CYRIX]
\c{SMINT} puts the processor into SMM mode. The CPU state information is
saved in the SMM memory header, and then execution begins at the SMM base
address.
\c{SMINTOLD} is the same as \c{SMINT}, but was the opcode used on the 486.
This pair of opcodes are specific to the Cyrix and compatible range of
processors (Cyrix, IBM, Via).
\S{insSMSW} \i\c{SMSW}: Store Machine Status Word
\c SMSW r/m16 ; 0F 01 /4 [286,PRIV]
\c{SMSW} stores the bottom half of the \c{CR0} control register (or
the Machine Status Word, on 286 processors) into the destination
operand. See also \c{LMSW} (\k{insLMSW}).
For 32-bit code, this would store all of \c{CR0} in the specified
register (or the bottom 16 bits if the destination is a memory location),
without needing an operand size override byte.
\S{insSQRTPD} \i\c{SQRTPD}: Packed Double-Precision FP Square Root
\c SQRTPD xmm1,xmm2/m128 ; 66 0F 51 /r [WILLAMETTE,SSE2]
\c{SQRTPD} calculates the square root of the packed double-precision
FP value from the source operand, and stores the double-precision
results in the destination register.
\S{insSQRTPS} \i\c{SQRTPS}: Packed Single-Precision FP Square Root
\c SQRTPS xmm1,xmm2/m128 ; 0F 51 /r [KATMAI,SSE]
\c{SQRTPS} calculates the square root of the packed single-precision
FP value from the source operand, and stores the single-precision
results in the destination register.
\S{insSQRTSD} \i\c{SQRTSD}: Scalar Double-Precision FP Square Root
\c SQRTSD xmm1,xmm2/m128 ; F2 0F 51 /r [WILLAMETTE,SSE2]
\c{SQRTSD} calculates the square root of the low-order double-precision
FP value from the source operand, and stores the double-precision
result in the destination register. The high-quadword remains unchanged.
\S{insSQRTSS} \i\c{SQRTSS}: Scalar Single-Precision FP Square Root
\c SQRTSS xmm1,xmm2/m128 ; F3 0F 51 /r [KATMAI,SSE]
\c{SQRTSS} calculates the square root of the low-order single-precision
FP value from the source operand, and stores the single-precision
result in the destination register. The three high doublewords remain
unchanged.
\S{insSTC} \i\c{STC}, \i\c{STD}, \i\c{STI}: Set Flags
\c STC ; F9 [8086]
\c STD ; FD [8086]
\c STI ; FB [8086]
These instructions set various flags. \c{STC} sets the carry flag;
\c{STD} sets the direction flag; and \c{STI} sets the interrupt flag
(thus enabling interrupts).
To clear the carry, direction, or interrupt flags, use the \c{CLC},
\c{CLD} and \c{CLI} instructions (\k{insCLC}). To invert the carry
flag, use \c{CMC} (\k{insCMC}).
\S{insSTMXCSR} \i\c{STMXCSR}: Store Streaming SIMD Extension
Control/Status
\c STMXCSR m32 ; 0F AE /3 [KATMAI,SSE]
\c{STMXCSR} stores the contents of the \c{MXCSR} control/status
register to the specified memory location. \c{MXCSR} is used to
enable masked/unmasked exception handling, to set rounding modes,
to set flush-to-zero mode, and to view exception status flags.
The reserved bits in the \c{MXCSR} register are stored as 0s.
For details of the \c{MXCSR} register, see the Intel processor docs.
See also \c{LDMXCSR} (\k{insLDMXCSR}).
\S{insSTOSB} \i\c{STOSB}, \i\c{STOSW}, \i\c{STOSD}: Store Byte to String
\c STOSB ; AA [8086]
\c STOSW ; o16 AB [8086]
\c STOSD ; o32 AB [386]
\c{STOSB} stores the byte in \c{AL} at \c{[ES:DI]} or \c{[ES:EDI]},
and sets the flags accordingly. It then increments or decrements
(depending on the direction flag: increments if the flag is clear,
decrements if it is set) \c{DI} (or \c{EDI}).
The register used is \c{DI} if the address size is 16 bits, and
\c{EDI} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
Segment override prefixes have no effect for this instruction: the
use of \c{ES} for the store to \c{[DI]} or \c{[EDI]} cannot be
overridden.
\c{STOSW} and \c{STOSD} work in the same way, but they store the
word in \c{AX} or the doubleword in \c{EAX} instead of the byte in
\c{AL}, and increment or decrement the addressing registers by 2 or
4 instead of 1.
The \c{REP} prefix may be used to repeat the instruction \c{CX} (or
\c{ECX} - again, the address size chooses which) times.
\S{insSTR} \i\c{STR}: Store Task Register
\c STR r/m16 ; 0F 00 /1 [286,PRIV]
\c{STR} stores the segment selector corresponding to the contents of
the Task Register into its operand. When the operand size is 32 bit and
the destination is a register, the upper 16-bits are cleared to 0s.
When the destination operand is a memory location, 16 bits are
written regardless of the operand size.
\S{insSUB} \i\c{SUB}: Subtract Integers
\c SUB r/m8,reg8 ; 28 /r [8086]
\c SUB r/m16,reg16 ; o16 29 /r [8086]
\c SUB r/m32,reg32 ; o32 29 /r [386]
\c SUB reg8,r/m8 ; 2A /r [8086]
\c SUB reg16,r/m16 ; o16 2B /r [8086]
\c SUB reg32,r/m32 ; o32 2B /r [386]
\c SUB r/m8,imm8 ; 80 /5 ib [8086]
\c SUB r/m16,imm16 ; o16 81 /5 iw [8086]
\c SUB r/m32,imm32 ; o32 81 /5 id [386]
\c SUB r/m16,imm8 ; o16 83 /5 ib [8086]
\c SUB r/m32,imm8 ; o32 83 /5 ib [386]
\c SUB AL,imm8 ; 2C ib [8086]
\c SUB AX,imm16 ; o16 2D iw [8086]
\c SUB EAX,imm32 ; o32 2D id [386]
\c{SUB} performs integer subtraction: it subtracts its second
operand from its first, and leaves the result in its destination
(first) operand. The flags are set according to the result of the
operation: in particular, the carry flag is affected and can be used
by a subsequent \c{SBB} instruction (\k{insSBB}).
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
\S{insSUBPD} \i\c{SUBPD}: Packed Double-Precision FP Subtract
\c SUBPD xmm1,xmm2/m128 ; 66 0F 5C /r [WILLAMETTE,SSE2]
\c{SUBPD} subtracts the packed double-precision FP values of
the source operand from those of the destination operand, and
stores the result in the destination operation.
\S{insSUBPS} \i\c{SUBPS}: Packed Single-Precision FP Subtract
\c SUBPS xmm1,xmm2/m128 ; 0F 5C /r [KATMAI,SSE]
\c{SUBPS} subtracts the packed single-precision FP values of
the source operand from those of the destination operand, and
stores the result in the destination operation.
\S{insSUBSD} \i\c{SUBSD}: Scalar Single-FP Subtract
\c SUBSD xmm1,xmm2/m128 ; F2 0F 5C /r [WILLAMETTE,SSE2]
\c{SUBSD} subtracts the low-order double-precision FP value of
the source operand from that of the destination operand, and
stores the result in the destination operation. The high
quadword is unchanged.
\S{insSUBSS} \i\c{SUBSS}: Scalar Single-FP Subtract
\c SUBSS xmm1,xmm2/m128 ; F3 0F 5C /r [KATMAI,SSE]
\c{SUBSS} subtracts the low-order single-precision FP value of
the source operand from that of the destination operand, and
stores the result in the destination operation. The three high
doublewords are unchanged.
\S{insSVDC} \i\c{SVDC}: Save Segment Register and Descriptor
\c SVDC m80,segreg ; 0F 78 /r [486,CYRIX,SMM]
\c{SVDC} saves a segment register (DS, ES, FS, GS, or SS) and its
descriptor to mem80.
\S{insSVLDT} \i\c{SVLDT}: Save LDTR and Descriptor
\c SVLDT m80 ; 0F 7A /0 [486,CYRIX,SMM]
\c{SVLDT} saves the Local Descriptor Table (LDTR) to mem80.
\S{insSVTS} \i\c{SVTS}: Save TSR and Descriptor
\c SVTS m80 ; 0F 7C /0 [486,CYRIX,SMM]
\c{SVTS} saves the Task State Register (TSR) to mem80.
\S{insSYSCALL} \i\c{SYSCALL}: Call Operating System
\c SYSCALL ; 0F 05 [P6,AMD]
\c{SYSCALL} provides a fast method of transferring control to a fixed
entry point in an operating system.
\b The \c{EIP} register is copied into the \c{ECX} register.
\b Bits [31-0] of the 64-bit SYSCALL/SYSRET Target Address Register
(\c{STAR}) are copied into the \c{EIP} register.
\b Bits [47-32] of the \c{STAR} register specify the selector that is
copied into the \c{CS} register.
\b Bits [47-32]+1000b of the \c{STAR} register specify the selector that
is copied into the SS register.
The \c{CS} and \c{SS} registers should not be modified by the operating
system between the execution of the \c{SYSCALL} instruction and its
corresponding \c{SYSRET} instruction.
For more information, see the \c{SYSCALL and SYSRET Instruction Specification}
(AMD document number 21086.pdf).
\S{insSYSENTER} \i\c{SYSENTER}: Fast System Call
\c SYSENTER ; 0F 34 [P6]
\c{SYSENTER} executes a fast call to a level 0 system procedure or
routine. Before using this instruction, various MSRs need to be set
up:
\b \c{SYSENTER_CS_MSR} contains the 32-bit segment selector for the
privilege level 0 code segment. (This value is also used to compute
the segment selector of the privilege level 0 stack segment.)
\b \c{SYSENTER_EIP_MSR} contains the 32-bit offset into the privilege
level 0 code segment to the first instruction of the selected operating
procedure or routine.
\b \c{SYSENTER_ESP_MSR} contains the 32-bit stack pointer for the
privilege level 0 stack.
\c{SYSENTER} performs the following sequence of operations:
\b Loads the segment selector from the \c{SYSENTER_CS_MSR} into the
\c{CS} register.
\b Loads the instruction pointer from the \c{SYSENTER_EIP_MSR} into
the \c{EIP} register.
\b Adds 8 to the value in \c{SYSENTER_CS_MSR} and loads it into the
\c{SS} register.
\b Loads the stack pointer from the \c{SYSENTER_ESP_MSR} into the
\c{ESP} register.
\b Switches to privilege level 0.
\b Clears the \c{VM} flag in the \c{EFLAGS} register, if the flag
is set.
\b Begins executing the selected system procedure.
In particular, note that this instruction des not save the values of
\c{CS} or \c{(E)IP}. If you need to return to the calling code, you
need to write your code to cater for this.
For more information, see the Intel Architecture Software Developer's
Manual, Volume 2.
\S{insSYSEXIT} \i\c{SYSEXIT}: Fast Return From System Call
\c SYSEXIT ; 0F 35 [P6,PRIV]
\c{SYSEXIT} executes a fast return to privilege level 3 user code.
This instruction is a companion instruction to the \c{SYSENTER}
instruction, and can only be executed by privilege level 0 code.
Various registers need to be set up before calling this instruction:
\b \c{SYSENTER_CS_MSR} contains the 32-bit segment selector for the
privilege level 0 code segment in which the processor is currently
executing. (This value is used to compute the segment selectors for
the privilege level 3 code and stack segments.)
\b \c{EDX} contains the 32-bit offset into the privilege level 3 code
segment to the first instruction to be executed in the user code.
\b \c{ECX} contains the 32-bit stack pointer for the privilege level 3
stack.
\c{SYSEXIT} performs the following sequence of operations:
\b Adds 16 to the value in \c{SYSENTER_CS_MSR} and loads the sum into
the \c{CS} selector register.
\b Loads the instruction pointer from the \c{EDX} register into the
\c{EIP} register.
\b Adds 24 to the value in \c{SYSENTER_CS_MSR} and loads the sum
into the \c{SS} selector register.
\b Loads the stack pointer from the \c{ECX} register into the \c{ESP}
register.
\b Switches to privilege level 3.
\b Begins executing the user code at the \c{EIP} address.
For more information on the use of the \c{SYSENTER} and \c{SYSEXIT}
instructions, see the Intel Architecture Software Developer's
Manual, Volume 2.
\S{insSYSRET} \i\c{SYSRET}: Return From Operating System
\c SYSRET ; 0F 07 [P6,AMD,PRIV]
\c{SYSRET} is the return instruction used in conjunction with the
\c{SYSCALL} instruction to provide fast entry/exit to an operating system.
\b The \c{ECX} register, which points to the next sequential instruction
after the corresponding \c{SYSCALL} instruction, is copied into the \c{EIP}
register.
\b Bits [63-48] of the \c{STAR} register specify the selector that is copied
into the \c{CS} register.
\b Bits [63-48]+1000b of the \c{STAR} register specify the selector that is
copied into the \c{SS} register.
\b Bits [1-0] of the \c{SS} register are set to 11b (RPL of 3) regardless of
the value of bits [49-48] of the \c{STAR} register.
The \c{CS} and \c{SS} registers should not be modified by the operating
system between the execution of the \c{SYSCALL} instruction and its
corresponding \c{SYSRET} instruction.
For more information, see the \c{SYSCALL and SYSRET Instruction Specification}
(AMD document number 21086.pdf).
\S{insTEST} \i\c{TEST}: Test Bits (notional bitwise AND)
\c TEST r/m8,reg8 ; 84 /r [8086]
\c TEST r/m16,reg16 ; o16 85 /r [8086]
\c TEST r/m32,reg32 ; o32 85 /r [386]
\c TEST r/m8,imm8 ; F6 /0 ib [8086]
\c TEST r/m16,imm16 ; o16 F7 /0 iw [8086]
\c TEST r/m32,imm32 ; o32 F7 /0 id [386]
\c TEST AL,imm8 ; A8 ib [8086]
\c TEST AX,imm16 ; o16 A9 iw [8086]
\c TEST EAX,imm32 ; o32 A9 id [386]
\c{TEST} performs a `mental' bitwise AND of its two operands, and
affects the flags as if the operation had taken place, but does not
store the result of the operation anywhere.
\S{insUCOMISD} \i\c{UCOMISD}: Unordered Scalar Double-Precision FP
compare and set EFLAGS
\c UCOMISD xmm1,xmm2/m128 ; 66 0F 2E /r [WILLAMETTE,SSE2]
\c{UCOMISD} compares the low-order double-precision FP numbers in the
two operands, and sets the \c{ZF}, \c{PF} and \c{CF} bits in the
\c{EFLAGS} register. In addition, the \c{OF}, \c{SF} and \c{AF} bits
in the \c{EFLAGS} register are zeroed out. The unordered predicate
(\c{ZF}, \c{PF} and \c{CF} all set) is returned if either source
operand is a \c{NaN} (\c{qNaN} or \c{sNaN}).
\S{insUCOMISS} \i\c{UCOMISS}: Unordered Scalar Single-Precision FP
compare and set EFLAGS
\c UCOMISS xmm1,xmm2/m128 ; 0F 2E /r [KATMAI,SSE]
\c{UCOMISS} compares the low-order single-precision FP numbers in the
two operands, and sets the \c{ZF}, \c{PF} and \c{CF} bits in the
\c{EFLAGS} register. In addition, the \c{OF}, \c{SF} and \c{AF} bits
in the \c{EFLAGS} register are zeroed out. The unordered predicate
(\c{ZF}, \c{PF} and \c{CF} all set) is returned if either source
operand is a \c{NaN} (\c{qNaN} or \c{sNaN}).
\S{insUD2} \i\c{UD0}, \i\c{UD1}, \i\c{UD2}: Undefined Instruction
\c UD0 ; 0F FF [186,UNDOC]
\c UD1 ; 0F B9 [186,UNDOC]
\c UD2 ; 0F 0B [186]
\c{UDx} can be used to generate an invalid opcode exception, for testing
purposes.
\c{UD0} is specifically documented by AMD as being reserved for this
purpose.
\c{UD1} is documented by Intel as being available for this purpose.
\c{UD2} is specifically documented by Intel as being reserved for this
purpose. Intel document this as the preferred method of generating an
invalid opcode exception.
All these opcodes can be used to generate invalid opcode exceptions on
all currently available processors.
\S{insUMOV} \i\c{UMOV}: User Move Data
\c UMOV r/m8,reg8 ; 0F 10 /r [386,UNDOC]
\c UMOV r/m16,reg16 ; o16 0F 11 /r [386,UNDOC]
\c UMOV r/m32,reg32 ; o32 0F 11 /r [386,UNDOC]
\c UMOV reg8,r/m8 ; 0F 12 /r [386,UNDOC]
\c UMOV reg16,r/m16 ; o16 0F 13 /r [386,UNDOC]
\c UMOV reg32,r/m32 ; o32 0F 13 /r [386,UNDOC]
This undocumented instruction is used by in-circuit emulators to
access user memory (as opposed to host memory). It is used just like
an ordinary memory/register or register/register \c{MOV}
instruction, but accesses user space.
This instruction is only available on some AMD and IBM 386 and 486
processors.
\S{insUNPCKHPD} \i\c{UNPCKHPD}: Unpack and Interleave High Packed
Double-Precision FP Values
\c UNPCKHPD xmm1,xmm2/m128 ; 66 0F 15 /r [WILLAMETTE,SSE2]
\c{UNPCKHPD} performs an interleaved unpack of the high-order data
elements of the source and destination operands, saving the result
in \c{xmm1}. It ignores the lower half of the sources.
The operation of this instruction is:
\c dst[63-0] := dst[127-64];
\c dst[127-64] := src[127-64].
\S{insUNPCKHPS} \i\c{UNPCKHPS}: Unpack and Interleave High Packed
Single-Precision FP Values
\c UNPCKHPS xmm1,xmm2/m128 ; 0F 15 /r [KATMAI,SSE]
\c{UNPCKHPS} performs an interleaved unpack of the high-order data
elements of the source and destination operands, saving the result
in \c{xmm1}. It ignores the lower half of the sources.
The operation of this instruction is:
\c dst[31-0] := dst[95-64];
\c dst[63-32] := src[95-64];
\c dst[95-64] := dst[127-96];
\c dst[127-96] := src[127-96].
\S{insUNPCKLPD} \i\c{UNPCKLPD}: Unpack and Interleave Low Packed
Double-Precision FP Data
\c UNPCKLPD xmm1,xmm2/m128 ; 66 0F 14 /r [WILLAMETTE,SSE2]
\c{UNPCKLPD} performs an interleaved unpack of the low-order data
elements of the source and destination operands, saving the result
in \c{xmm1}. It ignores the lower half of the sources.
The operation of this instruction is:
\c dst[63-0] := dst[63-0];
\c dst[127-64] := src[63-0].
\S{insUNPCKLPS} \i\c{UNPCKLPS}: Unpack and Interleave Low Packed
Single-Precision FP Data
\c UNPCKLPS xmm1,xmm2/m128 ; 0F 14 /r [KATMAI,SSE]
\c{UNPCKLPS} performs an interleaved unpack of the low-order data
elements of the source and destination operands, saving the result
in \c{xmm1}. It ignores the lower half of the sources.
The operation of this instruction is:
\c dst[31-0] := dst[31-0];
\c dst[63-32] := src[31-0];
\c dst[95-64] := dst[63-32];
\c dst[127-96] := src[63-32].
\S{insVERR} \i\c{VERR}, \i\c{VERW}: Verify Segment Readability/Writability
\c VERR r/m16 ; 0F 00 /4 [286,PRIV]
\c VERW r/m16 ; 0F 00 /5 [286,PRIV]
\b \c{VERR} sets the zero flag if the segment specified by the selector
in its operand can be read from at the current privilege level.
Otherwise it is cleared.
\b \c{VERW} sets the zero flag if the segment can be written.
\S{insWAIT} \i\c{WAIT}: Wait for Floating-Point Processor
\c WAIT ; 9B [8086]
\c FWAIT ; 9B [8086]
\c{WAIT}, on 8086 systems with a separate 8087 FPU, waits for the
FPU to have finished any operation it is engaged in before
continuing main processor operations, so that (for example) an FPU
store to main memory can be guaranteed to have completed before the
CPU tries to read the result back out.
On higher processors, \c{WAIT} is unnecessary for this purpose, and
it has the alternative purpose of ensuring that any pending unmasked
FPU exceptions have happened before execution continues.
\S{insWBINVD} \i\c{WBINVD}: Write Back and Invalidate Cache
\c WBINVD ; 0F 09 [486]
\c{WBINVD} invalidates and empties the processor's internal caches,
and causes the processor to instruct external caches to do the same.
It writes the contents of the caches back to memory first, so no
data is lost. To flush the caches quickly without bothering to write
the data back first, use \c{INVD} (\k{insINVD}).
\S{insWRMSR} \i\c{WRMSR}: Write Model-Specific Registers
\c WRMSR ; 0F 30 [PENT]
\c{WRMSR} writes the value in \c{EDX:EAX} to the processor
Model-Specific Register (MSR) whose index is stored in \c{ECX}.
See also \c{RDMSR} (\k{insRDMSR}).
\S{insWRSHR} \i\c{WRSHR}: Write SMM Header Pointer Register
\c WRSHR r/m32 ; 0F 37 /0 [386,CYRIX,SMM]
\c{WRSHR} loads the contents of either a 32-bit memory location or a
32-bit register into the SMM header pointer register.
See also \c{RDSHR} (\k{insRDSHR}).
\S{insXADD} \i\c{XADD}: Exchange and Add
\c XADD r/m8,reg8 ; 0F C0 /r [486]
\c XADD r/m16,reg16 ; o16 0F C1 /r [486]
\c XADD r/m32,reg32 ; o32 0F C1 /r [486]
\c{XADD} exchanges the values in its two operands, and then adds
them together and writes the result into the destination (first)
operand. This instruction can be used with a \c{LOCK} prefix for
multi-processor synchronisation purposes.
\S{insXBTS} \i\c{XBTS}: Extract Bit String
\c XBTS reg16,r/m16 ; o16 0F A6 /r [386,UNDOC]
\c XBTS reg32,r/m32 ; o32 0F A6 /r [386,UNDOC]
The implied operation of this instruction is:
\c XBTS r/m16,reg16,AX,CL
\c XBTS r/m32,reg32,EAX,CL
Writes a bit string from the source operand to the destination. \c{CL}
indicates the number of bits to be copied, and \c{(E)AX} indicates the
low order bit offset in the source. The bits are written to the low
order bits of the destination register. For example, if \c{CL} is set
to 4 and \c{AX} (for 16-bit code) is set to 5, bits 5-8 of \c{src} will
be copied to bits 0-3 of \c{dst}. This instruction is very poorly
documented, and I have been unable to find any official source of
documentation on it.
\c{XBTS} is supported only on the early Intel 386s, and conflicts with
the opcodes for \c{CMPXCHG486} (on early Intel 486s). NASM supports it
only for completeness. Its counterpart is \c{IBTS} (see \k{insIBTS}).
\S{insXCHG} \i\c{XCHG}: Exchange
\c XCHG reg8,r/m8 ; 86 /r [8086]
\c XCHG reg16,r/m8 ; o16 87 /r [8086]
\c XCHG reg32,r/m32 ; o32 87 /r [386]
\c XCHG r/m8,reg8 ; 86 /r [8086]
\c XCHG r/m16,reg16 ; o16 87 /r [8086]
\c XCHG r/m32,reg32 ; o32 87 /r [386]
\c XCHG AX,reg16 ; o16 90+r [8086]
\c XCHG EAX,reg32 ; o32 90+r [386]
\c XCHG reg16,AX ; o16 90+r [8086]
\c XCHG reg32,EAX ; o32 90+r [386]
\c{XCHG} exchanges the values in its two operands. It can be used
with a \c{LOCK} prefix for purposes of multi-processor
synchronisation.
\c{XCHG AX,AX} or \c{XCHG EAX,EAX} (depending on the \c{BITS}
setting) generates the opcode \c{90h}, and so is a synonym for
\c{NOP} (\k{insNOP}).
\S{insXLATB} \i\c{XLATB}: Translate Byte in Lookup Table
\c XLAT ; D7 [8086]
\c XLATB ; D7 [8086]
\c{XLATB} adds the value in \c{AL}, treated as an unsigned byte, to
\c{BX} or \c{EBX}, and loads the byte from the resulting address (in
the segment specified by \c{DS}) back into \c{AL}.
The base register used is \c{BX} if the address size is 16 bits, and
\c{EBX} if it is 32 bits. If you need to use an address size not
equal to the current \c{BITS} setting, you can use an explicit
\i\c{a16} or \i\c{a32} prefix.
The segment register used to load from \c{[BX+AL]} or \c{[EBX+AL]}
can be overridden by using a segment register name as a prefix (for
example, \c{es xlatb}).
\S{insXOR} \i\c{XOR}: Bitwise Exclusive OR
\c XOR r/m8,reg8 ; 30 /r [8086]
\c XOR r/m16,reg16 ; o16 31 /r [8086]
\c XOR r/m32,reg32 ; o32 31 /r [386]
\c XOR reg8,r/m8 ; 32 /r [8086]
\c XOR reg16,r/m16 ; o16 33 /r [8086]
\c XOR reg32,r/m32 ; o32 33 /r [386]
\c XOR r/m8,imm8 ; 80 /6 ib [8086]
\c XOR r/m16,imm16 ; o16 81 /6 iw [8086]
\c XOR r/m32,imm32 ; o32 81 /6 id [386]
\c XOR r/m16,imm8 ; o16 83 /6 ib [8086]
\c XOR r/m32,imm8 ; o32 83 /6 ib [386]
\c XOR AL,imm8 ; 34 ib [8086]
\c XOR AX,imm16 ; o16 35 iw [8086]
\c XOR EAX,imm32 ; o32 35 id [386]
\c{XOR} performs a bitwise XOR operation between its two operands
(i.e. each bit of the result is 1 if and only if exactly one of the
corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.
In the forms with an 8-bit immediate second operand and a longer
first operand, the second operand is considered to be signed, and is
sign-extended to the length of the first operand. In these cases,
the \c{BYTE} qualifier is necessary to force NASM to generate this
form of the instruction.
The \c{MMX} instruction \c{PXOR} (see \k{insPXOR}) performs the same
operation on the 64-bit \c{MMX} registers.
\S{insXORPD} \i\c{XORPD}: Bitwise Logical XOR of Double-Precision FP Values
\c XORPD xmm1,xmm2/m128 ; 66 0F 57 /r [WILLAMETTE,SSE2]
\c{XORPD} returns a bit-wise logical XOR between the source and
destination operands, storing the result in the destination operand.
\S{insXORPS} \i\c{XORPS}: Bitwise Logical XOR of Single-Precision FP Values
\c XORPS xmm1,xmm2/m128 ; 0F 57 /r [KATMAI,SSE]
\c{XORPS} returns a bit-wise logical XOR between the source and
destination operands, storing the result in the destination operand.
|