/* ----------------------------------------------------------------------- * * * Copyright 1996-2009 The NASM Authors - All Rights Reserved * See the file AUTHORS included with the NASM distribution for * the specific copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following * conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * ----------------------------------------------------------------------- */ /* * parser.c source line parser for the Netwide Assembler */ #include "compiler.h" #include #include #include #include #include #include #include "nasm.h" #include "insns.h" #include "nasmlib.h" #include "stdscan.h" #include "eval.h" #include "parser.h" #include "float.h" #include "tables.h" extern int in_abs_seg; /* ABSOLUTE segment flag */ extern int32_t abs_seg; /* ABSOLUTE segment */ extern int32_t abs_offset; /* ABSOLUTE segment offset */ static int is_comma_next(void); static int i; static struct tokenval tokval; static struct location *location; /* Pointer to current line's segment,offset */ void parser_global_info(struct location * locp) { location = locp; } static int prefix_slot(int prefix) { switch (prefix) { case P_WAIT: return PPS_WAIT; case R_CS: case R_DS: case R_SS: case R_ES: case R_FS: case R_GS: return PPS_SEG; case P_LOCK: return PPS_LOCK; case P_REP: case P_REPE: case P_REPZ: case P_REPNE: case P_REPNZ: case P_XACQUIRE: case P_XRELEASE: return PPS_REP; case P_O16: case P_O32: case P_O64: case P_OSP: return PPS_OSIZE; case P_A16: case P_A32: case P_A64: case P_ASP: return PPS_ASIZE; default: nasm_error(ERR_PANIC, "Invalid value %d passed to prefix_slot()", prefix); return -1; } } static void process_size_override(insn *result, int operand) { if (tasm_compatible_mode) { switch ((int)tokval.t_integer) { /* For TASM compatibility a size override inside the * brackets changes the size of the operand, not the * address type of the operand as it does in standard * NASM syntax. Hence: * * mov eax,[DWORD val] * * is valid syntax in TASM compatibility mode. Note that * you lose the ability to override the default address * type for the instruction, but we never use anything * but 32-bit flat model addressing in our code. */ case S_BYTE: result->oprs[operand].type |= BITS8; break; case S_WORD: result->oprs[operand].type |= BITS16; break; case S_DWORD: case S_LONG: result->oprs[operand].type |= BITS32; break; case S_QWORD: result->oprs[operand].type |= BITS64; break; case S_TWORD: result->oprs[operand].type |= BITS80; break; case S_OWORD: result->oprs[operand].type |= BITS128; break; default: nasm_error(ERR_NONFATAL, "invalid operand size specification"); break; } } else { /* Standard NASM compatible syntax */ switch ((int)tokval.t_integer) { case S_NOSPLIT: result->oprs[operand].eaflags |= EAF_TIMESTWO; break; case S_REL: result->oprs[operand].eaflags |= EAF_REL; break; case S_ABS: result->oprs[operand].eaflags |= EAF_ABS; break; case S_BYTE: result->oprs[operand].disp_size = 8; result->oprs[operand].eaflags |= EAF_BYTEOFFS; break; case P_A16: case P_A32: case P_A64: if (result->prefixes[PPS_ASIZE] && result->prefixes[PPS_ASIZE] != tokval.t_integer) nasm_error(ERR_NONFATAL, "conflicting address size specifications"); else result->prefixes[PPS_ASIZE] = tokval.t_integer; break; case S_WORD: result->oprs[operand].disp_size = 16; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; case S_DWORD: case S_LONG: result->oprs[operand].disp_size = 32; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; case S_QWORD: result->oprs[operand].disp_size = 64; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; default: nasm_error(ERR_NONFATAL, "invalid size specification in" " effective address"); break; } } } insn *parse_line(int pass, char *buffer, insn *result, ldfunc ldef) { bool insn_is_label = false; struct eval_hints hints; int operand; int critical; bool first; bool recover; int j; restart_parse: first = true; result->forw_ref = false; stdscan_reset(); stdscan_set(buffer); i = stdscan(NULL, &tokval); result->label = NULL; /* Assume no label */ result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialize this */ /* Ignore blank lines */ if (i == TOKEN_EOS) { result->opcode = I_none; return result; } if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i != TOKEN_REG || !IS_SREG(tokval.t_integer))) { nasm_error(ERR_NONFATAL, "label or instruction expected at start of line"); result->opcode = I_none; return result; } if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) { /* there's a label here */ first = false; result->label = tokval.t_charptr; i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0) { nasm_error(ERR_WARNING | ERR_WARN_OL | ERR_PASS1, "label alone on a line without a colon might be in error"); } if (i != TOKEN_INSN || tokval.t_integer != I_EQU) { /* * FIXME: location->segment could be NO_SEG, in which case * it is possible we should be passing 'abs_seg'. Look into this. * Work out whether that is *really* what we should be doing. * Generally fix things. I think this is right as it is, but * am still not certain. */ ldef(result->label, in_abs_seg ? abs_seg : location->segment, location->offset, NULL, true, false); } } /* Just a label here */ if (i == TOKEN_EOS) { result->opcode = I_none; return result; } for (j = 0; j < MAXPREFIX; j++) result->prefixes[j] = P_none; result->times = 1L; while (i == TOKEN_PREFIX || (i == TOKEN_REG && IS_SREG(tokval.t_integer))) { first = false; /* * Handle special case: the TIMES prefix. */ if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) { expr *value; i = stdscan(NULL, &tokval); value = evaluate(stdscan, NULL, &tokval, NULL, pass0, nasm_error, NULL); i = tokval.t_type; if (!value) { /* but, error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (!is_simple(value)) { nasm_error(ERR_NONFATAL, "non-constant argument supplied to TIMES"); result->times = 1L; } else { result->times = value->value; if (value->value < 0 && pass0 == 2) { nasm_error(ERR_NONFATAL, "TIMES value %"PRId64" is negative", value->value); result->times = 0; } } } else { int slot = prefix_slot(tokval.t_integer); if (result->prefixes[slot]) { if (result->prefixes[slot] == tokval.t_integer) nasm_error(ERR_WARNING | ERR_PASS1, "instruction has redundant prefixes"); else nasm_error(ERR_NONFATAL, "instruction has conflicting prefixes"); } result->prefixes[slot] = tokval.t_integer; i = stdscan(NULL, &tokval); } } if (i != TOKEN_INSN) { int j; enum prefixes pfx; for (j = 0; j < MAXPREFIX; j++) { if ((pfx = result->prefixes[j]) != P_none) break; } if (i == 0 && pfx != P_none) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { nasm_error(ERR_NONFATAL, "parser: instruction expected"); result->opcode = I_none; return result; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * INCBIN cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. */ if (result->opcode == I_INCBIN) { critical = (pass0 < 2 ? 1 : 2); } else critical = (pass == 2 ? 2 : 0); if (result->opcode == I_DB || result->opcode == I_DW || result->opcode == I_DD || result->opcode == I_DQ || result->opcode == I_DT || result->opcode == I_DO || result->opcode == I_DY || result->opcode == I_INCBIN) { extop *eop, **tail = &result->eops, **fixptr; int oper_num = 0; int32_t sign; result->eops_float = false; /* * Begin to read the DB/DW/DD/DQ/DT/DO/INCBIN operands. */ while (1) { i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; fixptr = tail; eop = *tail = nasm_malloc(sizeof(extop)); tail = &eop->next; eop->next = NULL; eop->type = EOT_NOTHING; oper_num++; sign = +1; /* * is_comma_next() here is to distinguish this from * a string used as part of an expression... */ if (i == TOKEN_STR && is_comma_next()) { eop->type = EOT_DB_STRING; eop->stringval = tokval.t_charptr; eop->stringlen = tokval.t_inttwo; i = stdscan(NULL, &tokval); /* eat the comma */ } else if (i == TOKEN_STRFUNC) { bool parens = false; const char *funcname = tokval.t_charptr; enum strfunc func = tokval.t_integer; i = stdscan(NULL, &tokval); if (i == '(') { parens = true; i = stdscan(NULL, &tokval); } if (i != TOKEN_STR) { nasm_error(ERR_NONFATAL, "%s must be followed by a string constant", funcname); eop->type = EOT_NOTHING; } else { eop->type = EOT_DB_STRING_FREE; eop->stringlen = string_transform(tokval.t_charptr, tokval.t_inttwo, &eop->stringval, func); if (eop->stringlen == (size_t)-1) { nasm_error(ERR_NONFATAL, "invalid string for transform"); eop->type = EOT_NOTHING; } } if (parens && i && i != ')') { i = stdscan(NULL, &tokval); if (i != ')') { nasm_error(ERR_NONFATAL, "unterminated %s function", funcname); } } if (i && i != ',') i = stdscan(NULL, &tokval); } else if (i == '-' || i == '+') { char *save = stdscan_get(); int token = i; sign = (i == '-') ? -1 : 1; i = stdscan(NULL, &tokval); if (i != TOKEN_FLOAT) { stdscan_set(save); i = tokval.t_type = token; goto is_expression; } else { goto is_float; } } else if (i == TOKEN_FLOAT) { is_float: eop->type = EOT_DB_STRING; result->eops_float = true; eop->stringlen = idata_bytes(result->opcode); if (eop->stringlen > 16) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in DY instruction"); eop->stringlen = 0; } else if (eop->stringlen < 1) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in unknown instruction"); /* * fix suggested by Pedro Gimeno... original line was: * eop->type = EOT_NOTHING; */ eop->stringlen = 0; } eop = nasm_realloc(eop, sizeof(extop) + eop->stringlen); tail = &eop->next; *fixptr = eop; eop->stringval = (char *)eop + sizeof(extop); if (!eop->stringlen || !float_const(tokval.t_charptr, sign, (uint8_t *)eop->stringval, eop->stringlen, nasm_error)) eop->type = EOT_NOTHING; i = stdscan(NULL, &tokval); /* eat the comma */ } else { /* anything else, assume it is an expression */ expr *value; is_expression: value = evaluate(stdscan, NULL, &tokval, NULL, critical, nasm_error, NULL); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (is_unknown(value)) { eop->type = EOT_DB_NUMBER; eop->offset = 0; /* doesn't matter what we put */ eop->segment = eop->wrt = NO_SEG; /* likewise */ } else if (is_reloc(value)) { eop->type = EOT_DB_NUMBER; eop->offset = reloc_value(value); eop->segment = reloc_seg(value); eop->wrt = reloc_wrt(value); } else { nasm_error(ERR_NONFATAL, "operand %d: expression is not simple" " or relocatable", oper_num); } } /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == TOKEN_EOS) /* also could be EOL */ break; if (i != ',') { nasm_error(ERR_NONFATAL, "comma expected after operand %d", oper_num); result->opcode = I_none;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) nasm_error(ERR_NONFATAL, "`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': second parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': third parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) nasm_error(ERR_NONFATAL, "`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ result->opcode = I_none; return result; } else /* DB ... */ if (oper_num == 0) nasm_error(ERR_WARNING | ERR_PASS1, "no operand for data declaration"); else result->operands = oper_num; return result; } /* * Now we begin to parse the operands. There may be up to four * of these, separated by commas, and terminated by a zero token. */ for (operand = 0; operand < MAX_OPERANDS; operand++) { expr *value; /* used most of the time */ int mref; /* is this going to be a memory ref? */ int bracket; /* is it a [] mref, or a & mref? */ int setsize = 0; result->oprs[operand].disp_size = 0; /* have to zero this whatever */ result->oprs[operand].eaflags = 0; /* and this */ result->oprs[operand].opflags = 0; i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; /* end of operands: get out of here */ else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; result->oprs[operand].type = 0; /* so far, no override */ while (i == TOKEN_SPECIAL) { /* size specifiers */ switch ((int)tokval.t_integer) { case S_BYTE: if (!setsize) /* we want to use only the first */ result->oprs[operand].type |= BITS8; setsize = 1; break; case S_WORD: if (!setsize) result->oprs[operand].type |= BITS16; setsize = 1; break; case S_DWORD: case S_LONG: if (!setsize) result->oprs[operand].type |= BITS32; setsize = 1; break; case S_QWORD: if (!setsize) result->oprs[operand].type |= BITS64; setsize = 1; break; case S_TWORD: if (!setsize) result->oprs[operand].type |= BITS80; setsize = 1; break; case S_OWORD: if (!setsize) result->oprs[operand].type |= BITS128; setsize = 1; break; case S_YWORD: if (!setsize) result->oprs[operand].type |= BITS256; setsize = 1; break; case S_TO: result->oprs[operand].type |= TO; break; case S_STRICT: result->oprs[operand].type |= STRICT; break; case S_FAR: result->oprs[operand].type |= FAR; break; case S_NEAR: result->oprs[operand].type |= NEAR; break; case S_SHORT: result->oprs[operand].type |= SHORT; break; default: nasm_error(ERR_NONFATAL, "invalid operand size specification"); } i = stdscan(NULL, &tokval); } if (i == '[' || i == '&') { /* memory reference */ mref = true; bracket = (i == '['); i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, operand); i = stdscan(NULL, &tokval); } } else { /* immediate operand, or register */ mref = false; bracket = false; /* placate optimisers */ } if ((result->oprs[operand].type & FAR) && !mref && result->opcode != I_JMP && result->opcode != I_CALL) { nasm_error(ERR_NONFATAL, "invalid use of FAR operand specifier"); } value = evaluate(stdscan, NULL, &tokval, &result->oprs[operand].opflags, critical, nasm_error, &hints); i = tokval.t_type; if (result->oprs[operand].opflags & OPFLAG_FORWARD) { result->forw_ref = true; } if (!value) { /* nasm_error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (i == ':' && mref) { /* it was seg:offset */ /* * Process the segment override. */ if (value[1].type != 0 || value->value != 1 || !IS_SREG(value->type)) nasm_error(ERR_NONFATAL, "invalid segment override"); else if (result->prefixes[PPS_SEG]) nasm_error(ERR_NONFATAL, "instruction has conflicting segment overrides"); else { result->prefixes[PPS_SEG] = value->type; if (IS_FSGS(value->type)) result->oprs[operand].eaflags |= EAF_FSGS; } i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, operand); i = stdscan(NULL, &tokval); } value = evaluate(stdscan, NULL, &tokval, &result->oprs[operand].opflags, critical, nasm_error, &hints); i = tokval.t_type; if (result->oprs[operand].opflags & OPFLAG_FORWARD) { result->forw_ref = true; } /* and get the offset */ if (!value) { /* but, error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } } recover = false; if (mref && bracket) { /* find ] at the end */ if (i != ']') { nasm_error(ERR_NONFATAL, "parser: expecting ]"); recover = true; } else { /* we got the required ] */ i = stdscan(NULL, &tokval); if (i != 0 && i != ',') { nasm_error(ERR_NONFATAL, "comma or end of line expected"); recover = true; } } } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':') { nasm_error(ERR_NONFATAL, "comma, colon or end of line expected"); recover = true; } else if (i == ':') { result->oprs[operand].type |= COLON; } } if (recover) { do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } /* * now convert the exprs returned from evaluate() * into operand descriptions... */ if (mref) { /* it's a memory reference */ expr *e = value; int b, i, s; /* basereg, indexreg, scale */ int64_t o; /* offset */ b = i = -1, o = s = 0; result->oprs[operand].hintbase = hints.base; result->oprs[operand].hinttype = hints.type; if (e->type && e->type <= EXPR_REG_END) { /* this bit's a register */ if (e->value == 1) /* in fact it can be basereg */ b = e->type; else /* no, it has to be indexreg */ i = e->type, s = e->value; e++; } if (e->type && e->type <= EXPR_REG_END) { /* it's a 2nd register */ if (b != -1) /* If the first was the base, ... */ i = e->type, s = e->value; /* second has to be indexreg */ else if (e->value != 1) { /* If both want to be index */ nasm_error(ERR_NONFATAL, "beroset-p-592-invalid effective address"); result->opcode = I_none; return result; } else b = e->type; e++; } if (e->type != 0) { /* is there an offset? */ if (e->type <= EXPR_REG_END) { /* in fact, is there an error? */ nasm_error(ERR_NONFATAL, "beroset-p-603-invalid effective address"); result->opcode = I_none; return result; } else { if (e->type == EXPR_UNKNOWN) { result->oprs[operand].opflags |= OPFLAG_UNKNOWN; o = 0; /* doesn't matter what */ result->oprs[operand].wrt = NO_SEG; /* nor this */ result->oprs[operand].segment = NO_SEG; /* or this */ while (e->type) e++; /* go to the end of the line */ } else { if (e->type == EXPR_SIMPLE) { o = e->value; e++; } if (e->type == EXPR_WRT) { result->oprs[operand].wrt = e->value; e++; } else result->oprs[operand].wrt = NO_SEG; /* * Look for a segment base type. */ if (e->type && e->type < EXPR_SEGBASE) { nasm_error(ERR_NONFATAL, "beroset-p-630-invalid effective address"); result->opcode = I_none; return result; } while (e->type && e->value == 0) e++; if (e->type && e->value != 1) { nasm_error(ERR_NONFATAL, "beroset-p-637-invalid effective address"); result->opcode = I_none; return result; } if (e->type) { result->oprs[operand].segment = e->type - EXPR_SEGBASE; e++; } else result->oprs[operand].segment = NO_SEG; while (e->type && e->value == 0) e++; if (e->type) { nasm_error(ERR_NONFATAL, "beroset-p-650-invalid effective address"); result->opcode = I_none; return result; } } } } else { o = 0; result->oprs[operand].wrt = NO_SEG; result->oprs[operand].segment = NO_SEG; } if (e->type != 0) { /* there'd better be nothing left! */ nasm_error(ERR_NONFATAL, "beroset-p-663-invalid effective address"); result->opcode = I_none; return result; } /* It is memory, but it can match any r/m operand */ result->oprs[operand].type |= MEMORY_ANY; if (b == -1 && (i == -1 || s == 0)) { int is_rel = globalbits == 64 && !(result->oprs[operand].eaflags & EAF_ABS) && ((globalrel && !(result->oprs[operand].eaflags & EAF_FSGS)) || (result->oprs[operand].eaflags & EAF_REL)); result->oprs[operand].type |= is_rel ? IP_REL : MEM_OFFS; } result->oprs[operand].basereg = b; result->oprs[operand].indexreg = i; result->oprs[operand].scale = s; result->oprs[operand].offset = o; } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].opflags |= OPFLAG_UNKNOWN; result->oprs[operand].offset = 0; /* don't care */ result->oprs[operand].segment = NO_SEG; /* don't care again */ result->oprs[operand].wrt = NO_SEG; /* still don't care */ if(optimizing >= 0 && !(result->oprs[operand].type & STRICT)) { /* Be optimistic */ result->oprs[operand].type |= UNITY | SBYTEWORD | SBYTEDWORD | UDWORD | SDWORD; } } else if (is_reloc(value)) { /* it's immediate */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = reloc_value(value); result->oprs[operand].segment = reloc_seg(value); result->oprs[operand].wrt = reloc_wrt(value); if (is_simple(value)) { uint64_t n = reloc_value(value); if (n == 1) result->oprs[operand].type |= UNITY; if (optimizing >= 0 && !(result->oprs[operand].type & STRICT)) { if ((uint32_t) (n + 128) <= 255) result->oprs[operand].type |= SBYTEDWORD; if ((uint16_t) (n + 128) <= 255) result->oprs[operand].type |= SBYTEWORD; if (n <= 0xFFFFFFFF) result->oprs[operand].type |= UDWORD; if (n + 0x80000000 <= 0xFFFFFFFF) result->oprs[operand].type |= SDWORD; } } } else { /* it's a register */ opflags_t rs; if (value->type >= EXPR_SIMPLE || value->value != 1) { nasm_error(ERR_NONFATAL, "invalid operand type"); result->opcode = I_none; return result; } /* * check that its only 1 register, not an expression... */ for (i = 1; value[i].type; i++) if (value[i].value) { nasm_error(ERR_NONFATAL, "invalid operand type"); result->opcode = I_none; return result; } /* clear overrides, except TO which applies to FPU regs */ if (result->oprs[operand].type & ~TO) { /* * we want to produce a warning iff the specified size * is different from the register size */ rs = result->oprs[operand].type & SIZE_MASK; } else rs = 0; result->oprs[operand].type &= TO; result->oprs[operand].type |= REGISTER; result->oprs[operand].type |= nasm_reg_flags[value->type]; result->oprs[operand].basereg = value->type; if (rs && (result->oprs[operand].type & SIZE_MASK) != rs) nasm_error(ERR_WARNING | ERR_PASS1, "register size specification ignored"); } } } result->operands = operand; /* set operand count */ /* clear remaining operands */ while (operand < MAX_OPERANDS) result->oprs[operand++].type = 0; /* * Transform RESW, RESD, RESQ, REST, RESO, RESY into RESB. */ switch (result->opcode) { case I_RESW: result->opcode = I_RESB; result->oprs[0].offset *= 2; break; case I_RESD: result->opcode = I_RESB; result->oprs[0].offset *= 4; break; case I_RESQ: result->opcode = I_RESB; result->oprs[0].offset *= 8; break; case I_REST: result->opcode = I_RESB; result->oprs[0].offset *= 10; break; case I_RESO: result->opcode = I_RESB; result->oprs[0].offset *= 16; break; case I_RESY: result->opcode = I_RESB; result->oprs[0].offset *= 32; break; default: break; } return result; } static int is_comma_next(void) { struct tokenval tv; char *p; int i; p = stdscan_get(); i = stdscan(NULL, &tv); stdscan_set(p); return (i == ',' || i == ';' || !i); } void cleanup_insn(insn * i) { extop *e; while ((e = i->eops)) { i->eops = e->next; if (e->type == EOT_DB_STRING_FREE) nasm_free(e->stringval); nasm_free(e); } }