summaryrefslogtreecommitdiff
path: root/float.c
diff options
context:
space:
mode:
authorH. Peter Anvin <hpa@zytor.com>2007-10-15 19:46:32 -0700
committerH. Peter Anvin <hpa@zytor.com>2007-10-15 19:46:32 -0700
commit214f549c5cd755661cd8a5d3b7c0ce4872d4afb6 (patch)
tree21d955c50c9b9594a4bb04e7bf485a09ed6c2baa /float.c
parent32f21f16fc7cb0bd5cf8dc3d54417295ecd3d57d (diff)
downloadnasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.tar.gz
nasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.tar.bz2
nasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.zip
New floating-point conversion routines
Substitute in nasm64developer's "acfloat4" routine. This floating-point conversion routine is not perfect (it gets a fair number of LSB errors), but the old NASM code was just plain broken. nasm64developer's code at least gets within ±1 LSB.
Diffstat (limited to 'float.c')
-rw-r--r--float.c830
1 files changed, 528 insertions, 302 deletions
diff --git a/float.c b/float.c
index 7d7b781..df70fe1 100644
--- a/float.c
+++ b/float.c
@@ -17,265 +17,490 @@
#include <inttypes.h>
#include "nasm.h"
+#include "float.h"
-#define MANT_WORDS 10 /* 112 bits + 48 for accuracy == 160 */
-#define MANT_DIGITS 49 /* 50 digits don't fit in 160 bits */
+/*
+ * -----------------
+ * local variables
+ * -----------------
+ */
+static efunc error;
+static bool daz = false; /* denormals as zero */
+static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
/*
- * guaranteed top bit of from is set
- * => we only have to worry about _one_ bit shift to the left
+ * -----------
+ * constants
+ * -----------
*/
-static int ieee_multiply(uint16_t *to, uint16_t *from)
+/* 112 bits + 64 bits for accuracy + 16 bits for rounding */
+#define MANT_WORDS 12
+
+/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
+#define MANT_DIGITS 52
+
+/* the format and the argument list depend on MANT_WORDS */
+#define MANT_FMT "%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x"
+#define MANT_ARG SOME_ARG(mant, 0)
+
+#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \
+ (a)[(i)+4], (a)[(i)+5], (a)[(i)+6], (a)[(i)+7], (a)[(i)+8], \
+ (a)[(i)+9], (a)[(i)+10], (a)[(i)+11]
+
+/*
+ * ---------------------------------------------------------------------------
+ * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
+ * ---------------------------------------------------------------------------
+ */
+
+#ifdef DEBUG_FLOAT
+#define dprintf(x) printf x
+#else /* */
+#define dprintf(x) do { } while (0)
+#endif /* */
+
+/*
+ * ---------------------------------------------------------------------------
+ * multiply
+ * ---------------------------------------------------------------------------
+ */
+static int float_multiply(uint16_t * to, uint16_t * from)
{
uint32_t temp[MANT_WORDS * 2];
- int i, j;
+ int32_t i, j;
+
+ /*
+ * guaranteed that top bit of 'from' is set -- so we only have
+ * to worry about _one_ bit shift to the left
+ */
+ dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
+ dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
- for (i = 0; i < MANT_WORDS * 2; i++)
- temp[i] = 0;
+ memset(temp, 0, sizeof temp);
- for (i = 0; i < MANT_WORDS; i++)
+ for (i = 0; i < MANT_WORDS; i++) {
for (j = 0; j < MANT_WORDS; j++) {
uint32_t n;
- n = (uint32_t)to[i] * (uint32_t)from[j];
+ n = (uint32_t) to[i] * (uint32_t) from[j];
temp[i + j] += n >> 16;
temp[i + j + 1] += n & 0xFFFF;
}
+ }
for (i = MANT_WORDS * 2; --i;) {
temp[i - 1] += temp[i] >> 16;
temp[i] &= 0xFFFF;
}
- if (temp[0] & 0x8000) {
- memcpy(to, temp, 2*MANT_WORDS);
- return 0;
- } else {
- for (i = 0; i < MANT_WORDS; i++)
- to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000);
- return -1;
- }
-}
-static int hexval(char c)
-{
- if (c >= '0' && c <= '9')
- return c-'0';
- else if (c >= 'a' && c <= 'f')
- return c-'a'+10;
- else
- return c-'A'+10;
-}
-
-static void ieee_flconvert_hex(char *string, uint16_t *mant,
- int32_t *exponent, efunc error)
-{
- static const int log2tbl[16] =
- { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
- uint16_t mult[MANT_WORDS+1], *mp;
- int ms;
- int32_t twopwr;
- int seendot, seendigit;
- unsigned char c;
-
- twopwr = 0;
- seendot = seendigit = 0;
- ms = 0;
- mp = NULL;
+ dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
+ SOME_ARG(temp, MANT_WORDS)));
- memset(mult, 0, sizeof mult);
-
- while ((c = *string++) != '\0') {
- if (c == '.') {
- if (!seendot)
- seendot = true;
- else {
- error(ERR_NONFATAL,
- "too many periods in floating-point constant");
- return;
- }
- } else if (isxdigit(c)) {
- int v = hexval(c);
-
- if (!seendigit && v) {
- int l = log2tbl[v];
-
- seendigit = 1;
- mp = mult;
- ms = 15-l;
-
- twopwr = seendot ? twopwr-4+l : l-3;
- }
-
- if (seendigit) {
- if (ms <= 0) {
- *mp |= v >> -ms;
- mp++;
- if (mp > &mult[MANT_WORDS])
- mp = &mult[MANT_WORDS]; /* Guard slot */
- ms += 16;
- }
- *mp |= v << ms;
- ms -= 4;
-
- if (!seendot)
- twopwr += 4;
- } else {
- if (seendot)
- twopwr -= 4;
- }
- } else if (c == 'p' || c == 'P') {
- twopwr += atoi(string);
- break;
- } else {
- error(ERR_NONFATAL,
- "floating-point constant: `%c' is invalid character",
- c);
- return;
+ if (temp[0] & 0x8000) {
+ for (i = 0; i < MANT_WORDS; i++) {
+ to[i] = temp[i] & 0xFFFF;
}
- }
-
- if (!seendigit) {
- memset(mant, 0, 2*MANT_WORDS); /* Zero */
- *exponent = 0;
+ dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
+ return 0;
} else {
- memcpy(mant, mult, 2*MANT_WORDS);
- *exponent = twopwr;
+ for (i = 0; i < MANT_WORDS; i++) {
+ to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000);
+ }
+ dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
+ return -1;
}
}
-static void ieee_flconvert(char *string, uint16_t *mant,
- int32_t *exponent, efunc error)
+/*
+ * ---------------------------------------------------------------------------
+ * convert
+ * ---------------------------------------------------------------------------
+ */
+static bool ieee_flconvert(const char *string, uint16_t * mant,
+ int32_t * exponent)
{
char digits[MANT_DIGITS];
char *p, *q, *r;
uint16_t mult[MANT_WORDS], bit;
uint16_t *m;
int32_t tenpwr, twopwr;
- int extratwos, started, seendot;
-
- if (string[0] == '0' && (string[1] == 'x' || string[1] == 'X')) {
- ieee_flconvert_hex(string+2, mant, exponent, error);
- return;
- }
-
+ int32_t extratwos;
+ bool started, seendot, warned;
p = digits;
tenpwr = 0;
- started = seendot = false;
+ started = seendot = warned = false;
while (*string && *string != 'E' && *string != 'e') {
if (*string == '.') {
- if (!seendot)
+ if (!seendot) {
seendot = true;
- else {
+ } else {
error(ERR_NONFATAL,
"too many periods in floating-point constant");
- return;
+ return false;
}
} else if (*string >= '0' && *string <= '9') {
if (*string == '0' && !started) {
- if (seendot)
+ if (seendot) {
tenpwr--;
+ }
} else {
started = true;
- if (p < digits + sizeof(digits))
+ if (p < digits + sizeof(digits)) {
*p++ = *string - '0';
- if (!seendot)
+ } else {
+ if (!warned) {
+ error(ERR_WARNING,
+ "floating-point constant significand contains "
+ "more than %i digits", MANT_DIGITS);
+ warned = true;
+ }
+ }
+ if (!seendot) {
tenpwr++;
+ }
}
+ } else if (*string == '_') {
+
+ /* do nothing */
} else {
error(ERR_NONFATAL,
- "floating-point constant: `%c' is invalid character",
- *string);
- return;
+ "invalid character in floating-point constant %s: '%c'",
+ "significand", *string);
+ return false;
}
string++;
}
if (*string) {
+ int32_t i = 0;
+ bool neg = false;
string++; /* eat the E */
- tenpwr += atoi(string);
+ if (*string == '+') {
+ string++;
+ } else if (*string == '-') {
+ neg = true;
+ string++;
+ }
+ while (*string) {
+ if (*string >= '0' && *string <= '9') {
+ i = (i * 10) + (*string - '0');
+
+ /*
+ * To ensure that underflows and overflows are
+ * handled properly we must avoid wraparounds of
+ * the signed integer value that is used to hold
+ * the exponent. Therefore we cap the exponent at
+ * +/-5000, which is slightly more/less than
+ * what's required for normal and denormal numbers
+ * in single, double, and extended precision, but
+ * sufficient to avoid signed integer wraparound.
+ */
+ if (i > 5000) {
+ break;
+ }
+ } else if (*string == '_') {
+
+ /* do nothing */
+ } else {
+ error(ERR_NONFATAL,
+ "invalid character in floating-point constant %s: '%c'",
+ "exponent", *string);
+ return false;
+ }
+ string++;
+ }
+ if (neg) {
+ i = 0 - i;
+ }
+ tenpwr += i;
}
/*
* At this point, the memory interval [digits,p) contains a
- * series of decimal digits zzzzzzz such that our number X
- * satisfies
- *
- * X = 0.zzzzzzz * 10^tenpwr
+ * series of decimal digits zzzzzzz, such that our number X
+ * satisfies X = 0.zzzzzzz * 10^tenpwr.
*/
+ q = digits;
+ dprintf(("X = 0."));
+ while (q < p) {
+ dprintf(("%c", *q + '0'));
+ q++;
+ }
+ dprintf((" * 10^%i\n", tenpwr));
+ /*
+ * Now convert [digits,p) to our internal representation.
+ */
bit = 0x8000;
- for (m = mant; m < mant + MANT_WORDS; m++)
+ for (m = mant; m < mant + MANT_WORDS; m++) {
*m = 0;
+ }
m = mant;
q = digits;
started = false;
twopwr = 0;
while (m < mant + MANT_WORDS) {
uint16_t carry = 0;
- while (p > q && !p[-1])
+ while (p > q && !p[-1]) {
p--;
- if (p <= q)
+ }
+ if (p <= q) {
break;
+ }
for (r = p; r-- > q;) {
- int i;
-
+ int32_t i;
i = 2 * *r + carry;
- if (i >= 10)
- carry = 1, i -= 10;
- else
+ if (i >= 10) {
+ carry = 1;
+ i -= 10;
+ } else {
carry = 0;
+ }
*r = i;
}
- if (carry)
- *m |= bit, started = true;
+ if (carry) {
+ *m |= bit;
+ started = true;
+ }
if (started) {
- if (bit == 1)
- bit = 0x8000, m++;
- else
+ if (bit == 1) {
+ bit = 0x8000;
+ m++;
+ } else {
bit >>= 1;
- } else
+ }
+ } else {
twopwr--;
+ }
}
twopwr += tenpwr;
/*
- * At this point the `mant' array contains the first six
- * fractional places of a base-2^16 real number, which when
- * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
- * really do multiply by 5^tenpwr.
+ * At this point, the 'mant' array contains the first frac-
+ * tional places of a base-2^16 real number which when mul-
+ * tiplied by 2^twopwr and 5^tenpwr gives X.
*/
+ dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
+ tenpwr));
- if (tenpwr < 0) {
- for (m = mult; m < mult + MANT_WORDS; m++)
+ /*
+ * Now multiply 'mant' by 5^tenpwr.
+ */
+ if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
+ for (m = mult; m < mult + MANT_WORDS - 1; m++) {
*m = 0xCCCC;
+ }
+ mult[MANT_WORDS - 1] = 0xCCCD;
extratwos = -2;
tenpwr = -tenpwr;
- } else if (tenpwr > 0) {
+
+ /*
+ * If tenpwr was 1000...000b, then it becomes 1000...000b. See
+ * the "ANSI C" comment below for more details on that case.
+ *
+ * Because we already truncated tenpwr to +5000...-5000 inside
+ * the exponent parsing code, this shouldn't happen though.
+ */
+ } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
mult[0] = 0xA000;
- for (m = mult + 1; m < mult + MANT_WORDS; m++)
+ for (m = mult + 1; m < mult + MANT_WORDS; m++) {
*m = 0;
+ }
extratwos = 3;
- } else
+ } else {
extratwos = 0;
+ }
while (tenpwr) {
- if (tenpwr & 1)
- twopwr += extratwos + ieee_multiply(mant, mult);
- extratwos = extratwos * 2 + ieee_multiply(mult, mult);
+ dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
+ twopwr, tenpwr, extratwos));
+ if (tenpwr & 1) {
+ dprintf(("mant*mult\n"));
+ twopwr += extratwos + float_multiply(mant, mult);
+ }
+ dprintf(("mult*mult\n"));
+ extratwos = extratwos * 2 + float_multiply(mult, mult);
tenpwr >>= 1;
+
+ /*
+ * In ANSI C, the result of right-shifting a signed integer is
+ * considered implementation-specific. To ensure that the loop
+ * terminates even if tenpwr was 1000...000b to begin with, we
+ * manually clear the MSB, in case a 1 was shifted in.
+ *
+ * Because we already truncated tenpwr to +5000...-5000 inside
+ * the exponent parsing code, this shouldn't matter; neverthe-
+ * less it is the right thing to do here.
+ */
+ tenpwr &= (uint32_t) - 1 >> 1;
}
/*
- * Conversion is done. The elements of `mant' contain the first
- * fractional places of a base-2^16 real number in [0.5,1)
- * which we can multiply by 2^twopwr to get X. Or, of course,
- * it contains zero.
+ * At this point, the 'mant' array contains the first frac-
+ * tional places of a base-2^16 real number in [0.5,1) that
+ * when multiplied by 2^twopwr gives X. Or it contains zero
+ * of course. We are done.
*/
*exponent = twopwr;
+ return true;
+}
+
+/*
+ * ---------------------------------------------------------------------------
+ * round a mantissa off after i words
+ * ---------------------------------------------------------------------------
+ */
+
+#define ROUND_COLLECT_BITS \
+ for (j = i; j < MANT_WORDS; j++) { \
+ m = m | mant[j]; \
+ }
+
+#define ROUND_ABS_DOWN \
+ for (j = i; j < MANT_WORDS; j++) { \
+ mant[j] = 0x0000; \
+ }
+
+#define ROUND_ABS_UP \
+ do { \
+ ++mant[--i]; \
+ mant[i] &= 0xFFFF; \
+ } while (i > 0 && !mant[i]); \
+ return (!i && !mant[i]);
+
+static int32_t ieee_round(int sign, uint16_t * mant, int32_t i)
+{
+ uint16_t m = 0;
+ int32_t j;
+ if ((sign == 0x0000) || (sign == 0x8000)) {
+ if (rc == FLOAT_RC_NEAR) {
+ if (mant[i] & 0x8000) {
+ mant[i] &= 0x7FFF;
+ ROUND_COLLECT_BITS;
+ mant[i] |= 0x8000;
+ if (m) {
+ ROUND_ABS_UP;
+ } else {
+ if (mant[i - 1] & 1) {
+ ROUND_ABS_UP;
+ } else {
+ ROUND_ABS_DOWN;
+ }
+ }
+ } else {
+ ROUND_ABS_DOWN;
+ }
+ } else if (((sign == 0x0000) && (rc == FLOAT_RC_DOWN))
+ || ((sign == 0x8000) && (rc == FLOAT_RC_UP))) {
+ ROUND_COLLECT_BITS;
+ if (m) {
+ ROUND_ABS_DOWN;
+ }
+ } else if (((sign == 0x0000) && (rc == FLOAT_RC_UP))
+ || ((sign == 0x8000) && (rc == FLOAT_RC_DOWN))) {
+ ROUND_COLLECT_BITS;
+ if (m) {
+ ROUND_ABS_UP;
+ }
+ } else if (rc == FLOAT_RC_ZERO) {
+ ROUND_ABS_DOWN;
+ } else {
+ error(ERR_PANIC, "float_round() can't handle rc=%i", rc);
+ }
+ } else {
+ error(ERR_PANIC, "float_round() can't handle sign=%i", sign);
+ }
+ return (0);
+}
+
+static int hexval(char c)
+{
+ if (c >= '0' && c <= '9')
+ return c - '0';
+ else if (c >= 'a' && c <= 'f')
+ return c - 'a' + 10;
+ else
+ return c - 'A' + 10;
+}
+
+static void ieee_flconvert_hex(const char *string, uint16_t * mant,
+ int32_t * exponent)
+{
+ static const int log2tbl[16] =
+ { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
+ uint16_t mult[MANT_WORDS + 1], *mp;
+ int ms;
+ int32_t twopwr;
+ int seendot, seendigit;
+ unsigned char c;
+
+ twopwr = 0;
+ seendot = seendigit = 0;
+ ms = 0;
+ mp = NULL;
+
+ memset(mult, 0, sizeof mult);
+
+ while ((c = *string++) != '\0') {
+ if (c == '.') {
+ if (!seendot)
+ seendot = true;
+ else {
+ error(ERR_NONFATAL,
+ "too many periods in floating-point constant");
+ return;
+ }
+ } else if (isxdigit(c)) {
+ int v = hexval(c);
+
+ if (!seendigit && v) {
+ int l = log2tbl[v];
+
+ seendigit = 1;
+ mp = mult;
+ ms = 15 - l;
+
+ twopwr = seendot ? twopwr - 4 + l : l - 3;
+ }
+
+ if (seendigit) {
+ if (ms <= 0) {
+ *mp |= v >> -ms;
+ mp++;
+ if (mp > &mult[MANT_WORDS])
+ mp = &mult[MANT_WORDS]; /* Guard slot */
+ ms += 16;
+ }
+ *mp |= v << ms;
+ ms -= 4;
+
+ if (!seendot)
+ twopwr += 4;
+ } else {
+ if (seendot)
+ twopwr -= 4;
+ }
+ } else if (c == 'p' || c == 'P') {
+ twopwr += atoi(string);
+ break;
+ } else {
+ error(ERR_NONFATAL,
+ "floating-point constant: `%c' is invalid character", c);
+ return;
+ }
+ }
+
+ if (!seendigit) {
+ memset(mant, 0, 2 * MANT_WORDS); /* Zero */
+ *exponent = 0;
+ } else {
+ memcpy(mant, mult, 2 * MANT_WORDS);
+ *exponent = twopwr;
+ }
}
/*
* Shift a mantissa to the right by i (i < 16) bits.
*/
-static void ieee_shr(uint16_t *mant, int i)
+static void ieee_shr(uint16_t * mant, int i)
{
uint16_t n = 0, m;
int j;
@@ -287,25 +512,14 @@ static void ieee_shr(uint16_t *mant, int i)
}
}
-/*
- * Round a mantissa off after i words.
- */
-static int ieee_round(uint16_t *mant, int i)
-{
- if (mant[i] & 0x8000) {
- do {
- ++mant[--i];
- mant[i] &= 0xFFFF;
- } while (i > 0 && !mant[i]);
- return !i && !mant[i];
- }
- return 0;
-}
-
-#define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
+#if defined(__i386__) || defined(__x86_64__)
+#define put(a,b) (*(uint16_t *)(a) = (b))
+#else
+#define put(a,b) (((a)[0] = (b)), ((a)[1] = (b) >> 8))
+#endif
/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
-static void set_bit(uint16_t *mant, int bit)
+static void set_bit(uint16_t * mant, int bit)
{
mant[bit >> 4] |= 1 << (~bit & 15);
}
@@ -319,113 +533,119 @@ static void set_bit(uint16_t *mant, int bit)
struct ieee_format {
int words;
- int mantissa; /* Bits in the mantissa */
- int exponent; /* Bits in the exponent */
+ int mantissa; /* Bits in the mantissa */
+ int exponent; /* Bits in the exponent */
};
-static const struct ieee_format ieee_16 = { 1, 10, 5 };
-static const struct ieee_format ieee_32 = { 2, 23, 8 };
-static const struct ieee_format ieee_64 = { 4, 52, 11 };
+static const struct ieee_format ieee_16 = { 1, 10, 5 };
+static const struct ieee_format ieee_32 = { 2, 23, 8 };
+static const struct ieee_format ieee_64 = { 4, 52, 11 };
static const struct ieee_format ieee_128 = { 8, 112, 15 };
/* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */
-static int to_float(char *str, int32_t sign, uint8_t *result,
- const struct ieee_format *fmt, efunc error)
+static int to_float(const char *str, int sign, uint8_t * result,
+ const struct ieee_format *fmt)
{
uint16_t mant[MANT_WORDS], *mp;
int32_t exponent;
- int32_t expmax = 1 << (fmt->exponent-1);
+ int32_t expmax = 1 << (fmt->exponent - 1);
uint16_t implicit_one = 0x8000 >> fmt->exponent;
int i;
sign = (sign < 0 ? 0x8000L : 0L);
if (str[0] == '_') {
- /* NaN or Infinity */
- int32_t expmask = (1 << fmt->exponent)-1;
-
- memset(mant, 0, sizeof mant);
- mant[0] = expmask << (15-fmt->exponent); /* Exponent: all bits one */
-
- switch (str[2]) {
- case 'n': /* __nan__ */
- case 'N':
- case 'q': /* __qnan__ */
- case 'Q':
- set_bit(mant, fmt->exponent+1); /* Highest bit in mantissa */
- break;
- case 's': /* __snan__ */
- case 'S':
- set_bit(mant, fmt->exponent+fmt->mantissa); /* Last bit */
- break;
- case 'i': /* __infinity__ */
- case 'I':
- break;
- }
+ /* NaN or Infinity */
+ int32_t expmask = (1 << fmt->exponent) - 1;
+
+ memset(mant, 0, sizeof mant);
+ mant[0] = expmask << (15 - fmt->exponent); /* Exponent: all bits one */
+
+ switch (str[2]) {
+ case 'n': /* __nan__ */
+ case 'N':
+ case 'q': /* __qnan__ */
+ case 'Q':
+ set_bit(mant, fmt->exponent + 1); /* Highest bit in mantissa */
+ break;
+ case 's': /* __snan__ */
+ case 'S':
+ set_bit(mant, fmt->exponent + fmt->mantissa); /* Last bit */
+ break;
+ case 'i': /* __infinity__ */
+ case 'I':
+ break;
+ }
} else {
- ieee_flconvert(str, mant, &exponent, error);
- if (mant[0] & 0x8000) {
- /*
- * Non-zero.
- */
- exponent--;
- if (exponent >= 2-expmax && exponent <= expmax) {
- /*
- * Normalised.
- */
- exponent += expmax-1;
- ieee_shr(mant, fmt->exponent);
- ieee_round(mant, fmt->words);
- /* did we scale up by one? */
- if (mant[0] & (implicit_one << 1)) {
- ieee_shr(mant, 1);
- exponent++;
- }
-
- mant[0] &= (implicit_one-1); /* remove leading one */
- mant[0] |= exponent << (15 - fmt->exponent);
- } else if (exponent < 2-expmax &&
- exponent >= 2-expmax-fmt->mantissa) {
- /*
- * Denormal.
- */
- int shift = -(exponent + expmax-2-fmt->exponent);
- int sh = shift % 16, wds = shift / 16;
- ieee_shr(mant, sh);
- if (ieee_round(mant, fmt->words - wds)
- || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
- ieee_shr(mant, 1);
- if (sh == 0)
- mant[0] |= 0x8000;
- exponent++;
- }
-
- if (wds) {
- for (i = fmt->words-1; i >= wds; i--)
- mant[i] = mant[i-wds];
- for (; i >= 0; i--)
- mant[i] = 0;
- }
- } else {
- if (exponent > 0) {
- error(ERR_NONFATAL, "overflow in floating-point constant");
- return 0;
- } else {
- memset(mant, 0, 2*fmt->words);
- }
- }
- } else {
- /* Zero */
- memset(mant, 0, 2*fmt->words);
- }
+ if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
+ ieee_flconvert_hex(str + 2, mant, &exponent);
+ else
+ ieee_flconvert(str, mant, &exponent);
+
+ if (mant[0] & 0x8000) {
+ /*
+ * Non-zero.
+ */
+ exponent--;
+ if (exponent >= 2 - expmax && exponent <= expmax) {
+ /*
+ * Normalised.
+ */
+ exponent += expmax - 1;
+ ieee_shr(mant, fmt->exponent);
+ ieee_round(sign, mant, fmt->words);
+ /* did we scale up by one? */
+ if (mant[0] & (implicit_one << 1)) {
+ ieee_shr(mant, 1);
+ exponent++;
+ }
+
+ mant[0] &= (implicit_one - 1); /* remove leading one */
+ mant[0] |= exponent << (15 - fmt->exponent);
+ } else if (!daz && exponent < 2 - expmax &&
+ exponent >= 2 - expmax - fmt->mantissa) {
+ /*
+ * Denormal.
+ */
+ int shift = -(exponent + expmax - 2 - fmt->exponent);
+ int sh = shift % 16, wds = shift / 16;
+ ieee_shr(mant, sh);
+ if (ieee_round(sign, mant, fmt->words - wds)
+ || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
+ ieee_shr(mant, 1);
+ if (sh == 0)
+ mant[0] |= 0x8000;
+ exponent++;
+ }
+
+ if (wds) {
+ for (i = fmt->words - 1; i >= wds; i--)
+ mant[i] = mant[i - wds];
+ for (; i >= 0; i--)
+ mant[i] = 0;
+ }
+ } else {
+ if (exponent > 0) {
+ error(ERR_NONFATAL,
+ "overflow in floating-point constant");
+ /* We should generate Inf here */
+ return 0;
+ } else {
+ memset(mant, 0, 2 * fmt->words);
+ }
+ }
+ } else {
+ /* Zero */
+ memset(mant, 0, 2 * fmt->words);
+ }
}
mant[0] |= sign;
for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) {
- uint16_t m = *--mp;
- put(result, m);
- result += 2;
+ uint16_t m = *--mp;
+ put(result, m);
+ result += 2;
}
return 1; /* success */
@@ -433,8 +653,7 @@ static int to_float(char *str, int32_t sign, uint8_t *result,
/* 80-bit format with 64-bit mantissa *including an explicit integer 1*
and 15-bit exponent. */
-static int to_ldoub(char *str, int32_t sign, uint8_t *result,
- efunc error)
+static int to_ldoub(const char *str, int sign, uint8_t * result)
{
uint16_t mant[MANT_WORDS];
int32_t exponent;
@@ -442,31 +661,35 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result,
sign = (sign < 0 ? 0x8000L : 0L);
if (str[0] == '_') {
- uint16_t is_snan = 0, is_qnan = 0x8000;
- switch (str[2]) {
- case 'n':
- case 'N':
- case 'q':
- case 'Q':
- is_qnan = 0xc000;
- break;
- case 's':
- case 'S':
- is_snan = 1;
- break;
- case 'i':
- case 'I':
- break;
- }
- put(result + 0, is_snan);
- put(result + 2, 0);
- put(result + 4, 0);
- put(result + 6, is_qnan);
- put(result + 8, 0x7fff|sign);
- return 1;
+ uint16_t is_snan = 0, is_qnan = 0x8000;
+ switch (str[2]) {
+ case 'n':
+ case 'N':
+ case 'q':
+ case 'Q':
+ is_qnan = 0xc000;
+ break;
+ case 's':
+ case 'S':
+ is_snan = 1;
+ break;
+ case 'i':
+ case 'I':
+ break;
+ }
+ put(result + 0, is_snan);
+ put(result + 2, 0);
+ put(result + 4, 0);
+ put(result + 6, is_qnan);
+ put(result + 8, 0x7fff | sign);
+ return 1;
}
- ieee_flconvert(str, mant, &exponent, error);
+ if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
+ ieee_flconvert_hex(str + 2, mant, &exponent);
+ else
+ ieee_flconvert(str, mant, &exponent);
+
if (mant[0] & 0x8000) {
/*
* Non-zero.
@@ -477,21 +700,21 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result,
* Normalised.
*/
exponent += 16383;
- if (ieee_round(mant, 4)) /* did we scale up by one? */
+ if (ieee_round(sign, mant, 4)) /* did we scale up by one? */
ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++;
put(result + 0, mant[3]);
put(result + 2, mant[2]);
put(result + 4, mant[1]);
put(result + 6, mant[0]);
put(result + 8, exponent | sign);
- } else if (exponent < -16383 && exponent >= -16446) {
+ } else if (!daz && exponent < -16383 && exponent >= -16446) {
/*
* Denormal.
*/
int shift = -(exponent + 16383);
int sh = shift % 16, wds = shift / 16;
ieee_shr(mant, sh);
- if (ieee_round(mant, 4 - wds)
+ if (ieee_round(sign, mant, 4 - wds)
|| (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) {
ieee_shr(mant, 1);
if (sh == 0)
@@ -506,39 +729,42 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result,
} else {
if (exponent > 0) {
error(ERR_NONFATAL, "overflow in floating-point constant");
+ /* We should generate Inf here */
return 0;
} else {
- goto zero;
- }
+ goto zero;
+ }
}
} else {
/*
* Zero.
*/
- zero:
- put(result + 0, 0);
- put(result + 2, 0);
- put(result + 4, 0);
- put(result + 6, 0);
- put(result + 8, sign);
+ zero:
+ put(result + 0, 0);
+ put(result + 2, 0);
+ put(result + 4, 0);
+ put(result + 6, 0);
+ put(result + 8, sign);
}
return 1;
}
-int float_const(char *number, int32_t sign, uint8_t *result, int bytes,
- efunc error)
+int float_const(const char *number, int32_t sign, uint8_t * result,
+ int bytes, efunc err)
{
+ error = err;
+
switch (bytes) {
case 2:
- return to_float(number, sign, result, &ieee_16, error);
+ return to_float(number, sign, result, &ieee_16);
case 4:
- return to_float(number, sign, result, &ieee_32, error);
+ return to_float(number, sign, result, &ieee_32);
case 8:
- return to_float(number, sign, result, &ieee_64, error);
+ return to_float(number, sign, result, &ieee_64);
case 10:
- return to_ldoub(number, sign, result, error);
+ return to_ldoub(number, sign, result);
case 16:
- return to_float(number, sign, result, &ieee_128, error);
+ return to_float(number, sign, result, &ieee_128);
default:
error(ERR_PANIC, "strange value %d passed to float_const", bytes);
return 0;