diff options
author | H. Peter Anvin <hpa@zytor.com> | 2007-10-15 19:46:32 -0700 |
---|---|---|
committer | H. Peter Anvin <hpa@zytor.com> | 2007-10-15 19:46:32 -0700 |
commit | 214f549c5cd755661cd8a5d3b7c0ce4872d4afb6 (patch) | |
tree | 21d955c50c9b9594a4bb04e7bf485a09ed6c2baa | |
parent | 32f21f16fc7cb0bd5cf8dc3d54417295ecd3d57d (diff) | |
download | nasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.tar.gz nasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.tar.bz2 nasm-214f549c5cd755661cd8a5d3b7c0ce4872d4afb6.zip |
New floating-point conversion routines
Substitute in nasm64developer's "acfloat4" routine. This
floating-point conversion routine is not perfect (it gets a fair
number of LSB errors), but the old NASM code was just plain broken.
nasm64developer's code at least gets within ±1 LSB.
-rw-r--r-- | float.c | 830 | ||||
-rw-r--r-- | float.h | 9 |
2 files changed, 536 insertions, 303 deletions
@@ -17,265 +17,490 @@ #include <inttypes.h> #include "nasm.h" +#include "float.h" -#define MANT_WORDS 10 /* 112 bits + 48 for accuracy == 160 */ -#define MANT_DIGITS 49 /* 50 digits don't fit in 160 bits */ +/* + * ----------------- + * local variables + * ----------------- + */ +static efunc error; +static bool daz = false; /* denormals as zero */ +static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */ /* - * guaranteed top bit of from is set - * => we only have to worry about _one_ bit shift to the left + * ----------- + * constants + * ----------- */ -static int ieee_multiply(uint16_t *to, uint16_t *from) +/* 112 bits + 64 bits for accuracy + 16 bits for rounding */ +#define MANT_WORDS 12 + +/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */ +#define MANT_DIGITS 52 + +/* the format and the argument list depend on MANT_WORDS */ +#define MANT_FMT "%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x_%04x%04x" +#define MANT_ARG SOME_ARG(mant, 0) + +#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], (a)[(i)+3], \ + (a)[(i)+4], (a)[(i)+5], (a)[(i)+6], (a)[(i)+7], (a)[(i)+8], \ + (a)[(i)+9], (a)[(i)+10], (a)[(i)+11] + +/* + * --------------------------------------------------------------------------- + * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined + * --------------------------------------------------------------------------- + */ + +#ifdef DEBUG_FLOAT +#define dprintf(x) printf x +#else /* */ +#define dprintf(x) do { } while (0) +#endif /* */ + +/* + * --------------------------------------------------------------------------- + * multiply + * --------------------------------------------------------------------------- + */ +static int float_multiply(uint16_t * to, uint16_t * from) { uint32_t temp[MANT_WORDS * 2]; - int i, j; + int32_t i, j; + + /* + * guaranteed that top bit of 'from' is set -- so we only have + * to worry about _one_ bit shift to the left + */ + dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0))); + dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0))); - for (i = 0; i < MANT_WORDS * 2; i++) - temp[i] = 0; + memset(temp, 0, sizeof temp); - for (i = 0; i < MANT_WORDS; i++) + for (i = 0; i < MANT_WORDS; i++) { for (j = 0; j < MANT_WORDS; j++) { uint32_t n; - n = (uint32_t)to[i] * (uint32_t)from[j]; + n = (uint32_t) to[i] * (uint32_t) from[j]; temp[i + j] += n >> 16; temp[i + j + 1] += n & 0xFFFF; } + } for (i = MANT_WORDS * 2; --i;) { temp[i - 1] += temp[i] >> 16; temp[i] &= 0xFFFF; } - if (temp[0] & 0x8000) { - memcpy(to, temp, 2*MANT_WORDS); - return 0; - } else { - for (i = 0; i < MANT_WORDS; i++) - to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000); - return -1; - } -} -static int hexval(char c) -{ - if (c >= '0' && c <= '9') - return c-'0'; - else if (c >= 'a' && c <= 'f') - return c-'a'+10; - else - return c-'A'+10; -} - -static void ieee_flconvert_hex(char *string, uint16_t *mant, - int32_t *exponent, efunc error) -{ - static const int log2tbl[16] = - { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; - uint16_t mult[MANT_WORDS+1], *mp; - int ms; - int32_t twopwr; - int seendot, seendigit; - unsigned char c; - - twopwr = 0; - seendot = seendigit = 0; - ms = 0; - mp = NULL; + dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0), + SOME_ARG(temp, MANT_WORDS))); - memset(mult, 0, sizeof mult); - - while ((c = *string++) != '\0') { - if (c == '.') { - if (!seendot) - seendot = true; - else { - error(ERR_NONFATAL, - "too many periods in floating-point constant"); - return; - } - } else if (isxdigit(c)) { - int v = hexval(c); - - if (!seendigit && v) { - int l = log2tbl[v]; - - seendigit = 1; - mp = mult; - ms = 15-l; - - twopwr = seendot ? twopwr-4+l : l-3; - } - - if (seendigit) { - if (ms <= 0) { - *mp |= v >> -ms; - mp++; - if (mp > &mult[MANT_WORDS]) - mp = &mult[MANT_WORDS]; /* Guard slot */ - ms += 16; - } - *mp |= v << ms; - ms -= 4; - - if (!seendot) - twopwr += 4; - } else { - if (seendot) - twopwr -= 4; - } - } else if (c == 'p' || c == 'P') { - twopwr += atoi(string); - break; - } else { - error(ERR_NONFATAL, - "floating-point constant: `%c' is invalid character", - c); - return; + if (temp[0] & 0x8000) { + for (i = 0; i < MANT_WORDS; i++) { + to[i] = temp[i] & 0xFFFF; } - } - - if (!seendigit) { - memset(mant, 0, 2*MANT_WORDS); /* Zero */ - *exponent = 0; + dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0)); + return 0; } else { - memcpy(mant, mult, 2*MANT_WORDS); - *exponent = twopwr; + for (i = 0; i < MANT_WORDS; i++) { + to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000); + } + dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1)); + return -1; } } -static void ieee_flconvert(char *string, uint16_t *mant, - int32_t *exponent, efunc error) +/* + * --------------------------------------------------------------------------- + * convert + * --------------------------------------------------------------------------- + */ +static bool ieee_flconvert(const char *string, uint16_t * mant, + int32_t * exponent) { char digits[MANT_DIGITS]; char *p, *q, *r; uint16_t mult[MANT_WORDS], bit; uint16_t *m; int32_t tenpwr, twopwr; - int extratwos, started, seendot; - - if (string[0] == '0' && (string[1] == 'x' || string[1] == 'X')) { - ieee_flconvert_hex(string+2, mant, exponent, error); - return; - } - + int32_t extratwos; + bool started, seendot, warned; p = digits; tenpwr = 0; - started = seendot = false; + started = seendot = warned = false; while (*string && *string != 'E' && *string != 'e') { if (*string == '.') { - if (!seendot) + if (!seendot) { seendot = true; - else { + } else { error(ERR_NONFATAL, "too many periods in floating-point constant"); - return; + return false; } } else if (*string >= '0' && *string <= '9') { if (*string == '0' && !started) { - if (seendot) + if (seendot) { tenpwr--; + } } else { started = true; - if (p < digits + sizeof(digits)) + if (p < digits + sizeof(digits)) { *p++ = *string - '0'; - if (!seendot) + } else { + if (!warned) { + error(ERR_WARNING, + "floating-point constant significand contains " + "more than %i digits", MANT_DIGITS); + warned = true; + } + } + if (!seendot) { tenpwr++; + } } + } else if (*string == '_') { + + /* do nothing */ } else { error(ERR_NONFATAL, - "floating-point constant: `%c' is invalid character", - *string); - return; + "invalid character in floating-point constant %s: '%c'", + "significand", *string); + return false; } string++; } if (*string) { + int32_t i = 0; + bool neg = false; string++; /* eat the E */ - tenpwr += atoi(string); + if (*string == '+') { + string++; + } else if (*string == '-') { + neg = true; + string++; + } + while (*string) { + if (*string >= '0' && *string <= '9') { + i = (i * 10) + (*string - '0'); + + /* + * To ensure that underflows and overflows are + * handled properly we must avoid wraparounds of + * the signed integer value that is used to hold + * the exponent. Therefore we cap the exponent at + * +/-5000, which is slightly more/less than + * what's required for normal and denormal numbers + * in single, double, and extended precision, but + * sufficient to avoid signed integer wraparound. + */ + if (i > 5000) { + break; + } + } else if (*string == '_') { + + /* do nothing */ + } else { + error(ERR_NONFATAL, + "invalid character in floating-point constant %s: '%c'", + "exponent", *string); + return false; + } + string++; + } + if (neg) { + i = 0 - i; + } + tenpwr += i; } /* * At this point, the memory interval [digits,p) contains a - * series of decimal digits zzzzzzz such that our number X - * satisfies - * - * X = 0.zzzzzzz * 10^tenpwr + * series of decimal digits zzzzzzz, such that our number X + * satisfies X = 0.zzzzzzz * 10^tenpwr. */ + q = digits; + dprintf(("X = 0.")); + while (q < p) { + dprintf(("%c", *q + '0')); + q++; + } + dprintf((" * 10^%i\n", tenpwr)); + /* + * Now convert [digits,p) to our internal representation. + */ bit = 0x8000; - for (m = mant; m < mant + MANT_WORDS; m++) + for (m = mant; m < mant + MANT_WORDS; m++) { *m = 0; + } m = mant; q = digits; started = false; twopwr = 0; while (m < mant + MANT_WORDS) { uint16_t carry = 0; - while (p > q && !p[-1]) + while (p > q && !p[-1]) { p--; - if (p <= q) + } + if (p <= q) { break; + } for (r = p; r-- > q;) { - int i; - + int32_t i; i = 2 * *r + carry; - if (i >= 10) - carry = 1, i -= 10; - else + if (i >= 10) { + carry = 1; + i -= 10; + } else { carry = 0; + } *r = i; } - if (carry) - *m |= bit, started = true; + if (carry) { + *m |= bit; + started = true; + } if (started) { - if (bit == 1) - bit = 0x8000, m++; - else + if (bit == 1) { + bit = 0x8000; + m++; + } else { bit >>= 1; - } else + } + } else { twopwr--; + } } twopwr += tenpwr; /* - * At this point the `mant' array contains the first six - * fractional places of a base-2^16 real number, which when - * multiplied by 2^twopwr and 5^tenpwr gives X. So now we - * really do multiply by 5^tenpwr. + * At this point, the 'mant' array contains the first frac- + * tional places of a base-2^16 real number which when mul- + * tiplied by 2^twopwr and 5^tenpwr gives X. */ + dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr, + tenpwr)); - if (tenpwr < 0) { - for (m = mult; m < mult + MANT_WORDS; m++) + /* + * Now multiply 'mant' by 5^tenpwr. + */ + if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */ + for (m = mult; m < mult + MANT_WORDS - 1; m++) { *m = 0xCCCC; + } + mult[MANT_WORDS - 1] = 0xCCCD; extratwos = -2; tenpwr = -tenpwr; - } else if (tenpwr > 0) { + + /* + * If tenpwr was 1000...000b, then it becomes 1000...000b. See + * the "ANSI C" comment below for more details on that case. + * + * Because we already truncated tenpwr to +5000...-5000 inside + * the exponent parsing code, this shouldn't happen though. + */ + } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */ mult[0] = 0xA000; - for (m = mult + 1; m < mult + MANT_WORDS; m++) + for (m = mult + 1; m < mult + MANT_WORDS; m++) { *m = 0; + } extratwos = 3; - } else + } else { extratwos = 0; + } while (tenpwr) { - if (tenpwr & 1) - twopwr += extratwos + ieee_multiply(mant, mult); - extratwos = extratwos * 2 + ieee_multiply(mult, mult); + dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG, + twopwr, tenpwr, extratwos)); + if (tenpwr & 1) { + dprintf(("mant*mult\n")); + twopwr += extratwos + float_multiply(mant, mult); + } + dprintf(("mult*mult\n")); + extratwos = extratwos * 2 + float_multiply(mult, mult); tenpwr >>= 1; + + /* + * In ANSI C, the result of right-shifting a signed integer is + * considered implementation-specific. To ensure that the loop + * terminates even if tenpwr was 1000...000b to begin with, we + * manually clear the MSB, in case a 1 was shifted in. + * + * Because we already truncated tenpwr to +5000...-5000 inside + * the exponent parsing code, this shouldn't matter; neverthe- + * less it is the right thing to do here. + */ + tenpwr &= (uint32_t) - 1 >> 1; } /* - * Conversion is done. The elements of `mant' contain the first - * fractional places of a base-2^16 real number in [0.5,1) - * which we can multiply by 2^twopwr to get X. Or, of course, - * it contains zero. + * At this point, the 'mant' array contains the first frac- + * tional places of a base-2^16 real number in [0.5,1) that + * when multiplied by 2^twopwr gives X. Or it contains zero + * of course. We are done. */ *exponent = twopwr; + return true; +} + +/* + * --------------------------------------------------------------------------- + * round a mantissa off after i words + * --------------------------------------------------------------------------- + */ + +#define ROUND_COLLECT_BITS \ + for (j = i; j < MANT_WORDS; j++) { \ + m = m | mant[j]; \ + } + +#define ROUND_ABS_DOWN \ + for (j = i; j < MANT_WORDS; j++) { \ + mant[j] = 0x0000; \ + } + +#define ROUND_ABS_UP \ + do { \ + ++mant[--i]; \ + mant[i] &= 0xFFFF; \ + } while (i > 0 && !mant[i]); \ + return (!i && !mant[i]); + +static int32_t ieee_round(int sign, uint16_t * mant, int32_t i) +{ + uint16_t m = 0; + int32_t j; + if ((sign == 0x0000) || (sign == 0x8000)) { + if (rc == FLOAT_RC_NEAR) { + if (mant[i] & 0x8000) { + mant[i] &= 0x7FFF; + ROUND_COLLECT_BITS; + mant[i] |= 0x8000; + if (m) { + ROUND_ABS_UP; + } else { + if (mant[i - 1] & 1) { + ROUND_ABS_UP; + } else { + ROUND_ABS_DOWN; + } + } + } else { + ROUND_ABS_DOWN; + } + } else if (((sign == 0x0000) && (rc == FLOAT_RC_DOWN)) + || ((sign == 0x8000) && (rc == FLOAT_RC_UP))) { + ROUND_COLLECT_BITS; + if (m) { + ROUND_ABS_DOWN; + } + } else if (((sign == 0x0000) && (rc == FLOAT_RC_UP)) + || ((sign == 0x8000) && (rc == FLOAT_RC_DOWN))) { + ROUND_COLLECT_BITS; + if (m) { + ROUND_ABS_UP; + } + } else if (rc == FLOAT_RC_ZERO) { + ROUND_ABS_DOWN; + } else { + error(ERR_PANIC, "float_round() can't handle rc=%i", rc); + } + } else { + error(ERR_PANIC, "float_round() can't handle sign=%i", sign); + } + return (0); +} + +static int hexval(char c) +{ + if (c >= '0' && c <= '9') + return c - '0'; + else if (c >= 'a' && c <= 'f') + return c - 'a' + 10; + else + return c - 'A' + 10; +} + +static void ieee_flconvert_hex(const char *string, uint16_t * mant, + int32_t * exponent) +{ + static const int log2tbl[16] = + { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; + uint16_t mult[MANT_WORDS + 1], *mp; + int ms; + int32_t twopwr; + int seendot, seendigit; + unsigned char c; + + twopwr = 0; + seendot = seendigit = 0; + ms = 0; + mp = NULL; + + memset(mult, 0, sizeof mult); + + while ((c = *string++) != '\0') { + if (c == '.') { + if (!seendot) + seendot = true; + else { + error(ERR_NONFATAL, + "too many periods in floating-point constant"); + return; + } + } else if (isxdigit(c)) { + int v = hexval(c); + + if (!seendigit && v) { + int l = log2tbl[v]; + + seendigit = 1; + mp = mult; + ms = 15 - l; + + twopwr = seendot ? twopwr - 4 + l : l - 3; + } + + if (seendigit) { + if (ms <= 0) { + *mp |= v >> -ms; + mp++; + if (mp > &mult[MANT_WORDS]) + mp = &mult[MANT_WORDS]; /* Guard slot */ + ms += 16; + } + *mp |= v << ms; + ms -= 4; + + if (!seendot) + twopwr += 4; + } else { + if (seendot) + twopwr -= 4; + } + } else if (c == 'p' || c == 'P') { + twopwr += atoi(string); + break; + } else { + error(ERR_NONFATAL, + "floating-point constant: `%c' is invalid character", c); + return; + } + } + + if (!seendigit) { + memset(mant, 0, 2 * MANT_WORDS); /* Zero */ + *exponent = 0; + } else { + memcpy(mant, mult, 2 * MANT_WORDS); + *exponent = twopwr; + } } /* * Shift a mantissa to the right by i (i < 16) bits. */ -static void ieee_shr(uint16_t *mant, int i) +static void ieee_shr(uint16_t * mant, int i) { uint16_t n = 0, m; int j; @@ -287,25 +512,14 @@ static void ieee_shr(uint16_t *mant, int i) } } -/* - * Round a mantissa off after i words. - */ -static int ieee_round(uint16_t *mant, int i) -{ - if (mant[i] & 0x8000) { - do { - ++mant[--i]; - mant[i] &= 0xFFFF; - } while (i > 0 && !mant[i]); - return !i && !mant[i]; - } - return 0; -} - -#define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) ) +#if defined(__i386__) || defined(__x86_64__) +#define put(a,b) (*(uint16_t *)(a) = (b)) +#else +#define put(a,b) (((a)[0] = (b)), ((a)[1] = (b) >> 8)) +#endif /* Set a bit, using *bigendian* bit numbering (0 = MSB) */ -static void set_bit(uint16_t *mant, int bit) +static void set_bit(uint16_t * mant, int bit) { mant[bit >> 4] |= 1 << (~bit & 15); } @@ -319,113 +533,119 @@ static void set_bit(uint16_t *mant, int bit) struct ieee_format { int words; - int mantissa; /* Bits in the mantissa */ - int exponent; /* Bits in the exponent */ + int mantissa; /* Bits in the mantissa */ + int exponent; /* Bits in the exponent */ }; -static const struct ieee_format ieee_16 = { 1, 10, 5 }; -static const struct ieee_format ieee_32 = { 2, 23, 8 }; -static const struct ieee_format ieee_64 = { 4, 52, 11 }; +static const struct ieee_format ieee_16 = { 1, 10, 5 }; +static const struct ieee_format ieee_32 = { 2, 23, 8 }; +static const struct ieee_format ieee_64 = { 4, 52, 11 }; static const struct ieee_format ieee_128 = { 8, 112, 15 }; /* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */ -static int to_float(char *str, int32_t sign, uint8_t *result, - const struct ieee_format *fmt, efunc error) +static int to_float(const char *str, int sign, uint8_t * result, + const struct ieee_format *fmt) { uint16_t mant[MANT_WORDS], *mp; int32_t exponent; - int32_t expmax = 1 << (fmt->exponent-1); + int32_t expmax = 1 << (fmt->exponent - 1); uint16_t implicit_one = 0x8000 >> fmt->exponent; int i; sign = (sign < 0 ? 0x8000L : 0L); if (str[0] == '_') { - /* NaN or Infinity */ - int32_t expmask = (1 << fmt->exponent)-1; - - memset(mant, 0, sizeof mant); - mant[0] = expmask << (15-fmt->exponent); /* Exponent: all bits one */ - - switch (str[2]) { - case 'n': /* __nan__ */ - case 'N': - case 'q': /* __qnan__ */ - case 'Q': - set_bit(mant, fmt->exponent+1); /* Highest bit in mantissa */ - break; - case 's': /* __snan__ */ - case 'S': - set_bit(mant, fmt->exponent+fmt->mantissa); /* Last bit */ - break; - case 'i': /* __infinity__ */ - case 'I': - break; - } + /* NaN or Infinity */ + int32_t expmask = (1 << fmt->exponent) - 1; + + memset(mant, 0, sizeof mant); + mant[0] = expmask << (15 - fmt->exponent); /* Exponent: all bits one */ + + switch (str[2]) { + case 'n': /* __nan__ */ + case 'N': + case 'q': /* __qnan__ */ + case 'Q': + set_bit(mant, fmt->exponent + 1); /* Highest bit in mantissa */ + break; + case 's': /* __snan__ */ + case 'S': + set_bit(mant, fmt->exponent + fmt->mantissa); /* Last bit */ + break; + case 'i': /* __infinity__ */ + case 'I': + break; + } } else { - ieee_flconvert(str, mant, &exponent, error); - if (mant[0] & 0x8000) { - /* - * Non-zero. - */ - exponent--; - if (exponent >= 2-expmax && exponent <= expmax) { - /* - * Normalised. - */ - exponent += expmax-1; - ieee_shr(mant, fmt->exponent); - ieee_round(mant, fmt->words); - /* did we scale up by one? */ - if (mant[0] & (implicit_one << 1)) { - ieee_shr(mant, 1); - exponent++; - } - - mant[0] &= (implicit_one-1); /* remove leading one */ - mant[0] |= exponent << (15 - fmt->exponent); - } else if (exponent < 2-expmax && - exponent >= 2-expmax-fmt->mantissa) { - /* - * Denormal. - */ - int shift = -(exponent + expmax-2-fmt->exponent); - int sh = shift % 16, wds = shift / 16; - ieee_shr(mant, sh); - if (ieee_round(mant, fmt->words - wds) - || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) { - ieee_shr(mant, 1); - if (sh == 0) - mant[0] |= 0x8000; - exponent++; - } - - if (wds) { - for (i = fmt->words-1; i >= wds; i--) - mant[i] = mant[i-wds]; - for (; i >= 0; i--) - mant[i] = 0; - } - } else { - if (exponent > 0) { - error(ERR_NONFATAL, "overflow in floating-point constant"); - return 0; - } else { - memset(mant, 0, 2*fmt->words); - } - } - } else { - /* Zero */ - memset(mant, 0, 2*fmt->words); - } + if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) + ieee_flconvert_hex(str + 2, mant, &exponent); + else + ieee_flconvert(str, mant, &exponent); + + if (mant[0] & 0x8000) { + /* + * Non-zero. + */ + exponent--; + if (exponent >= 2 - expmax && exponent <= expmax) { + /* + * Normalised. + */ + exponent += expmax - 1; + ieee_shr(mant, fmt->exponent); + ieee_round(sign, mant, fmt->words); + /* did we scale up by one? */ + if (mant[0] & (implicit_one << 1)) { + ieee_shr(mant, 1); + exponent++; + } + + mant[0] &= (implicit_one - 1); /* remove leading one */ + mant[0] |= exponent << (15 - fmt->exponent); + } else if (!daz && exponent < 2 - expmax && + exponent >= 2 - expmax - fmt->mantissa) { + /* + * Denormal. + */ + int shift = -(exponent + expmax - 2 - fmt->exponent); + int sh = shift % 16, wds = shift / 16; + ieee_shr(mant, sh); + if (ieee_round(sign, mant, fmt->words - wds) + || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) { + ieee_shr(mant, 1); + if (sh == 0) + mant[0] |= 0x8000; + exponent++; + } + + if (wds) { + for (i = fmt->words - 1; i >= wds; i--) + mant[i] = mant[i - wds]; + for (; i >= 0; i--) + mant[i] = 0; + } + } else { + if (exponent > 0) { + error(ERR_NONFATAL, + "overflow in floating-point constant"); + /* We should generate Inf here */ + return 0; + } else { + memset(mant, 0, 2 * fmt->words); + } + } + } else { + /* Zero */ + memset(mant, 0, 2 * fmt->words); + } } mant[0] |= sign; for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) { - uint16_t m = *--mp; - put(result, m); - result += 2; + uint16_t m = *--mp; + put(result, m); + result += 2; } return 1; /* success */ @@ -433,8 +653,7 @@ static int to_float(char *str, int32_t sign, uint8_t *result, /* 80-bit format with 64-bit mantissa *including an explicit integer 1* and 15-bit exponent. */ -static int to_ldoub(char *str, int32_t sign, uint8_t *result, - efunc error) +static int to_ldoub(const char *str, int sign, uint8_t * result) { uint16_t mant[MANT_WORDS]; int32_t exponent; @@ -442,31 +661,35 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result, sign = (sign < 0 ? 0x8000L : 0L); if (str[0] == '_') { - uint16_t is_snan = 0, is_qnan = 0x8000; - switch (str[2]) { - case 'n': - case 'N': - case 'q': - case 'Q': - is_qnan = 0xc000; - break; - case 's': - case 'S': - is_snan = 1; - break; - case 'i': - case 'I': - break; - } - put(result + 0, is_snan); - put(result + 2, 0); - put(result + 4, 0); - put(result + 6, is_qnan); - put(result + 8, 0x7fff|sign); - return 1; + uint16_t is_snan = 0, is_qnan = 0x8000; + switch (str[2]) { + case 'n': + case 'N': + case 'q': + case 'Q': + is_qnan = 0xc000; + break; + case 's': + case 'S': + is_snan = 1; + break; + case 'i': + case 'I': + break; + } + put(result + 0, is_snan); + put(result + 2, 0); + put(result + 4, 0); + put(result + 6, is_qnan); + put(result + 8, 0x7fff | sign); + return 1; } - ieee_flconvert(str, mant, &exponent, error); + if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) + ieee_flconvert_hex(str + 2, mant, &exponent); + else + ieee_flconvert(str, mant, &exponent); + if (mant[0] & 0x8000) { /* * Non-zero. @@ -477,21 +700,21 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result, * Normalised. */ exponent += 16383; - if (ieee_round(mant, 4)) /* did we scale up by one? */ + if (ieee_round(sign, mant, 4)) /* did we scale up by one? */ ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++; put(result + 0, mant[3]); put(result + 2, mant[2]); put(result + 4, mant[1]); put(result + 6, mant[0]); put(result + 8, exponent | sign); - } else if (exponent < -16383 && exponent >= -16446) { + } else if (!daz && exponent < -16383 && exponent >= -16446) { /* * Denormal. */ int shift = -(exponent + 16383); int sh = shift % 16, wds = shift / 16; ieee_shr(mant, sh); - if (ieee_round(mant, 4 - wds) + if (ieee_round(sign, mant, 4 - wds) || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) { ieee_shr(mant, 1); if (sh == 0) @@ -506,39 +729,42 @@ static int to_ldoub(char *str, int32_t sign, uint8_t *result, } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); + /* We should generate Inf here */ return 0; } else { - goto zero; - } + goto zero; + } } } else { /* * Zero. */ - zero: - put(result + 0, 0); - put(result + 2, 0); - put(result + 4, 0); - put(result + 6, 0); - put(result + 8, sign); + zero: + put(result + 0, 0); + put(result + 2, 0); + put(result + 4, 0); + put(result + 6, 0); + put(result + 8, sign); } return 1; } -int float_const(char *number, int32_t sign, uint8_t *result, int bytes, - efunc error) +int float_const(const char *number, int32_t sign, uint8_t * result, + int bytes, efunc err) { + error = err; + switch (bytes) { case 2: - return to_float(number, sign, result, &ieee_16, error); + return to_float(number, sign, result, &ieee_16); case 4: - return to_float(number, sign, result, &ieee_32, error); + return to_float(number, sign, result, &ieee_32); case 8: - return to_float(number, sign, result, &ieee_64, error); + return to_float(number, sign, result, &ieee_64); case 10: - return to_ldoub(number, sign, result, error); + return to_ldoub(number, sign, result); case 16: - return to_float(number, sign, result, &ieee_128, error); + return to_float(number, sign, result, &ieee_128); default: error(ERR_PANIC, "strange value %d passed to float_const", bytes); return 0; @@ -10,7 +10,14 @@ #ifndef NASM_FLOAT_H #define NASM_FLOAT_H -int float_const(char *number, int32_t sign, uint8_t *result, int bytes, +enum float_round { + FLOAT_RC_NEAR, + FLOAT_RC_ZERO, + FLOAT_RC_DOWN, + FLOAT_RC_UP, +}; + +int float_const(const char *string, int sign, uint8_t *result, int bytes, efunc error); #endif |