/* * Copyright © 2020 Google, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "util/ralloc.h" #include "ir3.h" struct ir3_validate_ctx { struct ir3 *ir; /* Current block being validated: */ struct ir3_block *current_block; /* Current instruction being validated: */ struct ir3_instruction *current_instr; /* Set of instructions found so far, used to validate that we * don't have SSA uses that occure before def's */ struct set *defs; }; static void validate_error(struct ir3_validate_ctx *ctx, const char *condstr) { fprintf(stderr, "validation fail: %s\n", condstr); if (ctx->current_instr) { fprintf(stderr, " -> for instruction: "); ir3_print_instr(ctx->current_instr); } else { fprintf(stderr, " -> for block%u\n", block_id(ctx->current_block)); } abort(); } #define validate_assert(ctx, cond) \ do { \ if (!(cond)) { \ validate_error(ctx, #cond); \ } \ } while (0) static unsigned reg_class_flags(struct ir3_register *reg) { return reg->flags & (IR3_REG_HALF | IR3_REG_SHARED); } static void validate_src(struct ir3_validate_ctx *ctx, struct ir3_instruction *instr, struct ir3_register *reg) { if (reg->flags & IR3_REG_IMMED) validate_assert(ctx, ir3_valid_immediate(instr, reg->iim_val)); if (!(reg->flags & IR3_REG_SSA) || !reg->def) return; struct ir3_register *src = reg->def; validate_assert(ctx, _mesa_set_search(ctx->defs, src->instr)); validate_assert(ctx, src->wrmask == reg->wrmask); validate_assert(ctx, reg_class_flags(src) == reg_class_flags(reg)); if (reg->tied) { validate_assert(ctx, reg->tied->tied == reg); bool found = false; foreach_dst (dst, instr) { if (dst == reg->tied) { found = true; break; } } validate_assert(ctx, found && "tied register not in the same instruction"); } } /* phi sources are logically read at the end of the predecessor basic block, * and we have to validate them then in order to correctly validate that the * use comes after the definition for loop phis. */ static void validate_phi_src(struct ir3_validate_ctx *ctx, struct ir3_block *block, struct ir3_block *pred) { unsigned pred_idx = ir3_block_get_pred_index(block, pred); foreach_instr (phi, &block->instr_list) { if (phi->opc != OPC_META_PHI) break; ctx->current_instr = phi; validate_assert(ctx, phi->srcs_count == block->predecessors_count); validate_src(ctx, phi, phi->srcs[pred_idx]); } } static void validate_phi(struct ir3_validate_ctx *ctx, struct ir3_instruction *phi) { _mesa_set_add(ctx->defs, phi); validate_assert(ctx, phi->dsts_count == 1); validate_assert(ctx, is_dest_gpr(phi->dsts[0])); } static void validate_dst(struct ir3_validate_ctx *ctx, struct ir3_instruction *instr, struct ir3_register *reg) { if (reg->tied) { validate_assert(ctx, reg->tied->tied == reg); validate_assert(ctx, reg_class_flags(reg->tied) == reg_class_flags(reg)); validate_assert(ctx, reg->tied->wrmask == reg->wrmask); if (reg->flags & IR3_REG_ARRAY) { validate_assert(ctx, reg->tied->array.base == reg->array.base); validate_assert(ctx, reg->tied->size == reg->size); } bool found = false; foreach_src (src, instr) { if (src == reg->tied) { found = true; break; } } validate_assert(ctx, found && "tied register not in the same instruction"); } if (reg->flags & IR3_REG_SSA) validate_assert(ctx, reg->instr == instr); if (reg->flags & IR3_REG_RELATIV) validate_assert(ctx, instr->address); } #define validate_reg_size(ctx, reg, type) \ validate_assert( \ ctx, (type_size(type) <= 16) == !!((reg)->flags & IR3_REG_HALF)) static void validate_instr(struct ir3_validate_ctx *ctx, struct ir3_instruction *instr) { struct ir3_register *last_reg = NULL; foreach_src_n (reg, n, instr) { if (reg->flags & IR3_REG_RELATIV) validate_assert(ctx, instr->address); validate_src(ctx, instr, reg); /* Validate that all src's are either half of full. * * Note: tex instructions w/ .s2en are a bit special in that the * tex/samp src reg is half-reg for non-bindless and full for * bindless, irrespective of the precision of other srcs. The * tex/samp src is the first src reg when .s2en is set */ if (reg->tied) { /* must have the same size as the destination, handled in * validate_reg(). */ } else if (reg == instr->address) { validate_assert(ctx, reg->flags & IR3_REG_HALF); } else if ((instr->flags & IR3_INSTR_S2EN) && (n < 2)) { if (n == 0) { if (instr->flags & IR3_INSTR_B) validate_assert(ctx, !(reg->flags & IR3_REG_HALF)); else validate_assert(ctx, reg->flags & IR3_REG_HALF); } } else if (opc_cat(instr->opc) == 1 || opc_cat(instr->opc) == 6) { /* handled below */ } else if (opc_cat(instr->opc) == 0) { /* end/chmask/etc are allowed to have different size sources */ } else if (instr->opc == OPC_META_PARALLEL_COPY) { /* pcopy sources have to match with their destination but can have * different sizes from each other. */ } else if (instr->opc == OPC_ANY_MACRO || instr->opc == OPC_ALL_MACRO || instr->opc == OPC_READ_FIRST_MACRO || instr->opc == OPC_READ_COND_MACRO) { /* nothing yet */ } else if (n > 0) { validate_assert(ctx, (last_reg->flags & IR3_REG_HALF) == (reg->flags & IR3_REG_HALF)); } last_reg = reg; } for (unsigned i = 0; i < instr->dsts_count; i++) { struct ir3_register *reg = instr->dsts[i]; validate_dst(ctx, instr, reg); } _mesa_set_add(ctx->defs, instr); /* Check that src/dst types match the register types, and for * instructions that have different opcodes depending on type, * that the opcodes are correct. */ switch (opc_cat(instr->opc)) { case 1: /* move instructions */ if (instr->opc == OPC_MOVMSK || instr->opc == OPC_BALLOT_MACRO) { validate_assert(ctx, instr->dsts_count == 1); validate_assert(ctx, instr->dsts[0]->flags & IR3_REG_SHARED); validate_assert(ctx, !(instr->dsts[0]->flags & IR3_REG_HALF)); validate_assert( ctx, util_is_power_of_two_or_zero(instr->dsts[0]->wrmask + 1)); } else if (instr->opc == OPC_ANY_MACRO || instr->opc == OPC_ALL_MACRO || instr->opc == OPC_READ_FIRST_MACRO || instr->opc == OPC_READ_COND_MACRO) { /* nothing yet */ } else if (instr->opc == OPC_ELECT_MACRO || instr->opc == OPC_SHPS_MACRO) { validate_assert(ctx, instr->dsts_count == 1); validate_assert(ctx, !(instr->dsts[0]->flags & IR3_REG_SHARED)); } else if (instr->opc == OPC_SCAN_MACRO) { validate_assert(ctx, instr->dsts_count == 3); validate_assert(ctx, instr->srcs_count == 2); validate_assert(ctx, reg_class_flags(instr->dsts[0]) == reg_class_flags(instr->srcs[0])); validate_assert(ctx, reg_class_flags(instr->dsts[1]) == reg_class_flags(instr->srcs[0])); validate_assert(ctx, reg_class_flags(instr->dsts[2]) == IR3_REG_SHARED); } else { foreach_dst (dst, instr) validate_reg_size(ctx, dst, instr->cat1.dst_type); foreach_src (src, instr) { if (!src->tied && src != instr->address) validate_reg_size(ctx, src, instr->cat1.src_type); } switch (instr->opc) { case OPC_SWZ: validate_assert(ctx, instr->srcs_count == 2); validate_assert(ctx, instr->dsts_count == 2); break; case OPC_GAT: validate_assert(ctx, instr->srcs_count == 4); validate_assert(ctx, instr->dsts_count == 1); break; case OPC_SCT: validate_assert(ctx, instr->srcs_count == 1); validate_assert(ctx, instr->dsts_count == 4); break; default: break; } } if (instr->opc != OPC_MOV) validate_assert(ctx, !instr->address); break; case 3: /* Validate that cat3 opc matches the src type. We've already checked * that all the src regs are same type */ if (instr->srcs[0]->flags & IR3_REG_HALF) { validate_assert(ctx, instr->opc == cat3_half_opc(instr->opc)); } else { validate_assert(ctx, instr->opc == cat3_full_opc(instr->opc)); } break; case 4: /* Validate that cat4 opc matches the dst type: */ if (instr->dsts[0]->flags & IR3_REG_HALF) { validate_assert(ctx, instr->opc == cat4_half_opc(instr->opc)); } else { validate_assert(ctx, instr->opc == cat4_full_opc(instr->opc)); } break; case 5: validate_reg_size(ctx, instr->dsts[0], instr->cat5.type); break; case 6: switch (instr->opc) { case OPC_RESINFO: case OPC_RESFMT: validate_reg_size(ctx, instr->dsts[0], instr->cat6.type); validate_reg_size(ctx, instr->srcs[0], instr->cat6.type); break; case OPC_L2G: case OPC_G2L: validate_assert(ctx, !(instr->dsts[0]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); break; case OPC_STG: validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[1]->flags & IR3_REG_HALF)); validate_reg_size(ctx, instr->srcs[2], instr->cat6.type); validate_assert(ctx, !(instr->srcs[3]->flags & IR3_REG_HALF)); break; case OPC_STG_A: validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[2]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[3]->flags & IR3_REG_HALF)); validate_reg_size(ctx, instr->srcs[4], instr->cat6.type); validate_assert(ctx, !(instr->srcs[5]->flags & IR3_REG_HALF)); break; case OPC_STL: case OPC_STP: case OPC_STLW: case OPC_SPILL_MACRO: validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); validate_reg_size(ctx, instr->srcs[1], instr->cat6.type); validate_assert(ctx, !(instr->srcs[2]->flags & IR3_REG_HALF)); break; case OPC_STIB: validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[1]->flags & IR3_REG_HALF)); validate_reg_size(ctx, instr->srcs[2], instr->cat6.type); break; case OPC_GETFIBERID: case OPC_GETSPID: case OPC_GETWID: validate_reg_size(ctx, instr->dsts[0], instr->cat6.type); break; case OPC_STC: case OPC_STSC: validate_reg_size(ctx, instr->srcs[0], instr->cat6.type); validate_assert(ctx, !(instr->srcs[1]->flags & IR3_REG_HALF)); break; case OPC_LDC_K: validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); validate_assert(ctx, !(instr->srcs[1]->flags & IR3_REG_HALF)); break; default: validate_reg_size(ctx, instr->dsts[0], instr->cat6.type); validate_assert(ctx, !(instr->srcs[0]->flags & IR3_REG_HALF)); if (instr->srcs_count > 1) validate_assert(ctx, !(instr->srcs[1]->flags & IR3_REG_HALF)); break; } } if (instr->opc == OPC_META_PARALLEL_COPY) { foreach_src_n (src, n, instr) { validate_assert(ctx, reg_class_flags(src) == reg_class_flags(instr->dsts[n])); } } } static bool is_physical_successor(struct ir3_block *block, struct ir3_block *succ) { for (unsigned i = 0; i < ARRAY_SIZE(block->physical_successors); i++) if (block->physical_successors[i] == succ) return true; return false; } void ir3_validate(struct ir3 *ir) { #ifdef NDEBUG #define VALIDATE 0 #else #define VALIDATE 1 #endif if (!VALIDATE) return; struct ir3_validate_ctx *ctx = ralloc_size(NULL, sizeof(*ctx)); ctx->ir = ir; ctx->defs = _mesa_pointer_set_create(ctx); foreach_block (block, &ir->block_list) { ctx->current_block = block; ctx->current_instr = NULL; /* We require that the first block does not have any predecessors, * which allows us to assume that phi nodes and meta:input's do not * appear in the same basic block. */ validate_assert( ctx, block != ir3_start_block(ir) || block->predecessors_count == 0); struct ir3_instruction *prev = NULL; foreach_instr (instr, &block->instr_list) { ctx->current_instr = instr; if (instr->opc == OPC_META_PHI) { /* phis must be the first in the block */ validate_assert(ctx, prev == NULL || prev->opc == OPC_META_PHI); validate_phi(ctx, instr); } else { validate_instr(ctx, instr); } prev = instr; } for (unsigned i = 0; i < 2; i++) { if (block->successors[i]) { validate_phi_src(ctx, block->successors[i], block); ctx->current_instr = NULL; /* Each logical successor should also be a physical successor: */ validate_assert(ctx, is_physical_successor(block, block->successors[i])); } } validate_assert(ctx, block->successors[0] || !block->successors[1]); validate_assert(ctx, block->physical_successors[0] || !block->physical_successors[1]); } ralloc_free(ctx); }