/* * This file is part of ltrace. * Copyright (C) 2011,2012,2013,2014 Petr Machata, Red Hat Inc. * Copyright (C) 2010 Joe Damato * Copyright (C) 1998,2009 Juan Cespedes * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include "config.h" #include #include #include #include #include #include #include "backend.h" #include "breakpoint.h" #include "debug.h" #include "fetch.h" #include "options.h" #include "proc.h" #include "value_dict.h" #if defined(HAVE_LIBDW) # include "dwarf_prototypes.h" #endif /* defined(HAVE_LIBDW) */ #ifndef OS_HAVE_PROCESS_DATA int os_process_init(struct process *proc) { return 0; } void os_process_destroy(struct process *proc) { } int os_process_clone(struct process *retp, struct process *proc) { return 0; } int os_process_exec(struct process *proc) { return 0; } #endif #ifndef ARCH_HAVE_PROCESS_DATA int arch_process_init(struct process *proc) { return 0; } void arch_process_destroy(struct process *proc) { } int arch_process_clone(struct process *retp, struct process *proc) { return 0; } int arch_process_exec(struct process *proc) { return 0; } #endif #ifndef ARCH_HAVE_DYNLINK_DONE void arch_dynlink_done(struct process *proc) { } #endif static int add_process(struct process *proc, int was_exec); static void unlist_process(struct process *proc); static void destroy_unwind(struct process *proc) { #if defined(HAVE_LIBUNWIND) if (proc->unwind_priv != NULL) _UPT_destroy(proc->unwind_priv); if (proc->unwind_as != NULL) unw_destroy_addr_space(proc->unwind_as); #endif /* defined(HAVE_LIBUNWIND) */ #if defined(HAVE_LIBDW) if (proc->dwfl != NULL) dwfl_end(proc->dwfl); #endif /* defined(HAVE_LIBDW) */ } static int process_bare_init(struct process *proc, const char *filename, pid_t pid, int was_exec) { if (!was_exec) { memset(proc, 0, sizeof(*proc)); proc->filename = strdup(filename); if (proc->filename == NULL) { fail: free(proc->filename); if (proc->breakpoints != NULL) { dict_destroy(proc->breakpoints, NULL, NULL, NULL); free(proc->breakpoints); proc->breakpoints = NULL; } return -1; } } /* Add process so that we know who the leader is. */ proc->pid = pid; if (add_process(proc, was_exec) < 0) goto fail; if (proc->leader == NULL) { unlist_and_fail: if (!was_exec) unlist_process(proc); goto fail; } if (proc->leader == proc) { proc->breakpoints = malloc(sizeof(*proc->breakpoints)); if (proc->breakpoints == NULL) goto unlist_and_fail; DICT_INIT(proc->breakpoints, arch_addr_t, struct breakpoint *, arch_addr_hash, arch_addr_eq, NULL); } else { proc->breakpoints = NULL; } #if defined(HAVE_LIBUNWIND) if (options.bt_depth > 0) { proc->unwind_priv = _UPT_create(pid); proc->unwind_as = unw_create_addr_space(&_UPT_accessors, 0); if (proc->unwind_priv == NULL || proc->unwind_as == NULL) { fprintf(stderr, "Couldn't initialize unwinding " "for process %d\n", proc->pid); destroy_unwind(proc); proc->unwind_priv = NULL; proc->unwind_as = NULL; } } #endif /* defined(HAVE_LIBUNWIND) */ #if defined(HAVE_LIBDW) proc->dwfl = NULL; /* Initialize for leader only on first library. */ proc->should_attach_dwfl = 1; /* should try to attach the DWFL data */ #endif /* defined(HAVE_LIBDW) */ return 0; } static void process_bare_destroy(struct process *proc, int was_exec) { dict_destroy(proc->breakpoints, NULL, NULL, NULL); free(proc->breakpoints); if (!was_exec) { free(proc->filename); unlist_process(proc); destroy_unwind(proc); } } static int process_init_main(struct process *proc) { if (breakpoints_init(proc) < 0) { fprintf(stderr, "failed to init breakpoints %d\n", proc->pid); return -1; } return 0; } int process_init(struct process *proc, const char *filename, pid_t pid) { if (process_bare_init(proc, filename, pid, 0) < 0) { fail: fprintf(stderr, "failed to initialize process %d: %s\n", pid, strerror(errno)); return -1; } if (os_process_init(proc) < 0) { process_bare_destroy(proc, 0); goto fail; } if (arch_process_init(proc) < 0) { os_process_destroy(proc); process_bare_destroy(proc, 0); goto fail; } if (proc->leader != proc) { proc->e_machine = proc->leader->e_machine; proc->e_class = proc->leader->e_class; get_arch_dep(proc); } else if (process_init_main(proc) < 0) { process_bare_destroy(proc, 0); goto fail; } return 0; } static enum callback_status destroy_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data) { breakpoint_destroy(bp); free(bp); return CBS_CONT; } // XXX see comment in handle_event.c void callstack_pop(struct process *proc); static void private_process_destroy(struct process *proc, int was_exec) { /* Pop remaining stack elements. */ while (proc->callstack_depth > 0) { /* When this is called just before a process is * destroyed, the breakpoints should either have been * retracted by now, or were killed by exec. In any * case, it's safe to pretend that there are no * breakpoints associated with the stack elements, so * that stack_pop doesn't attempt to destroy them. */ size_t i = proc->callstack_depth - 1; if (!proc->callstack[i].is_syscall) proc->callstack[i].return_addr = 0; callstack_pop(proc); } if (!was_exec) free(proc->filename); /* Libraries and symbols. This is only relevant in * leader. */ struct library *lib; for (lib = proc->libraries; lib != NULL; ) { struct library *next = lib->next; library_destroy(lib); free(lib); lib = next; } proc->libraries = NULL; /* Breakpoints. */ if (proc->breakpoints != NULL) { proc_each_breakpoint(proc, NULL, destroy_breakpoint_cb, NULL); dict_destroy(proc->breakpoints, NULL, NULL, NULL); free(proc->breakpoints); proc->breakpoints = NULL; } destroy_unwind(proc); } void process_destroy(struct process *proc) { arch_process_destroy(proc); os_process_destroy(proc); private_process_destroy(proc, 0); } int process_exec(struct process *proc) { /* Call exec handlers first, before we destroy the main * state. */ if (arch_process_exec(proc) < 0 || os_process_exec(proc) < 0) return -1; private_process_destroy(proc, 1); if (process_bare_init(proc, NULL, proc->pid, 1) < 0) return -1; if (process_init_main(proc) < 0) { process_bare_destroy(proc, 1); return -1; } return 0; } struct process * open_program(const char *filename, pid_t pid) { assert(pid != 0); struct process *proc = malloc(sizeof(*proc)); if (proc == NULL || process_init(proc, filename, pid) < 0) { free(proc); return NULL; } return proc; } struct clone_single_bp_data { struct process *old_proc; struct process *new_proc; }; static enum callback_status clone_single_bp(arch_addr_t *key, struct breakpoint **bpp, void *u) { struct breakpoint *bp = *bpp; struct clone_single_bp_data *data = u; struct breakpoint *clone = malloc(sizeof(*clone)); if (clone == NULL || breakpoint_clone(clone, data->new_proc, bp) < 0) { fail: free(clone); return CBS_STOP; } if (proc_add_breakpoint(data->new_proc->leader, clone) < 0) { breakpoint_destroy(clone); goto fail; } return CBS_CONT; } int process_clone(struct process *retp, struct process *proc, pid_t pid) { if (process_bare_init(retp, proc->filename, pid, 0) < 0) { fail1: fprintf(stderr, "Failed to clone process %d to %d: %s\n", proc->pid, pid, strerror(errno)); return -1; } retp->tracesysgood = proc->tracesysgood; retp->e_machine = proc->e_machine; retp->e_class = proc->e_class; /* For non-leader processes, that's all we need to do. */ if (retp->leader != retp) return 0; /* Clone symbols first so that we can clone and relink * breakpoints. */ struct library *lib; struct library **nlibp = &retp->libraries; for (lib = proc->leader->libraries; lib != NULL; lib = lib->next) { *nlibp = malloc(sizeof(**nlibp)); if (*nlibp == NULL || library_clone(*nlibp, lib) < 0) { free(*nlibp); *nlibp = NULL; fail2: process_bare_destroy(retp, 0); /* Error when cloning. Unroll what was done. */ for (lib = retp->libraries; lib != NULL; ) { struct library *next = lib->next; library_destroy(lib); free(lib); lib = next; } goto fail1; } nlibp = &(*nlibp)->next; } /* Now clone breakpoints. Symbol relinking is done in * clone_single_bp. */ struct clone_single_bp_data data = { .old_proc = proc, .new_proc = retp, }; if (DICT_EACH(proc->leader->breakpoints, arch_addr_t, struct breakpoint *, NULL, clone_single_bp, &data) != NULL) goto fail2; /* And finally the call stack. */ /* XXX clearly the callstack handling should be moved to a * separate module and this whole business extracted to * callstack_clone, or callstack_element_clone. */ memcpy(retp->callstack, proc->callstack, sizeof(retp->callstack)); retp->callstack_depth = proc->callstack_depth; size_t i; for (i = 0; i < retp->callstack_depth; ++i) { struct callstack_element *elem = &retp->callstack[i]; struct fetch_context *ctx = elem->fetch_context; if (ctx != NULL) { struct fetch_context *nctx = fetch_arg_clone(retp, ctx); if (nctx == NULL) { size_t j; fail3: for (j = 0; j < i; ++j) { nctx = retp->callstack[j].fetch_context; fetch_arg_done(nctx); elem->fetch_context = NULL; } goto fail2; } elem->fetch_context = nctx; } if (elem->arguments != NULL) { struct value_dict *nargs = malloc(sizeof(*nargs)); if (nargs == NULL || val_dict_clone(nargs, elem->arguments) < 0) { size_t j; for (j = 0; j < i; ++j) { nargs = retp->callstack[j].arguments; val_dict_destroy(nargs); free(nargs); elem->arguments = NULL; } /* Pretend that this round went well, * so that fail3 frees I-th * fetch_context. */ ++i; goto fail3; } elem->arguments = nargs; } /* If it's not a syscall, we need to find the * corresponding library symbol in the cloned * library. */ if (!elem->is_syscall && elem->c_un.libfunc != NULL) { struct library_symbol *libfunc = elem->c_un.libfunc; int rc = proc_find_symbol(retp, libfunc, NULL, &elem->c_un.libfunc); assert(rc == 0); } } /* At this point, retp is fully initialized, except for OS and * arch parts, and we can call private_process_destroy. */ if (os_process_clone(retp, proc) < 0) { private_process_destroy(retp, 0); return -1; } if (arch_process_clone(retp, proc) < 0) { os_process_destroy(retp); private_process_destroy(retp, 0); return -1; } return 0; } static int open_one_pid(pid_t pid) { debug(DEBUG_PROCESS, "open_one_pid(pid=%d)", pid); /* Get the filename first. Should the trace_pid fail, we can * easily free it, untracing is more work. */ char *filename = pid2name(pid); if (filename == NULL || trace_pid(pid) < 0) { fail: free(filename); return -1; } struct process *proc = open_program(filename, pid); if (proc == NULL) goto fail; free(filename); trace_set_options(proc); return 0; } static enum callback_status start_one_pid(struct process *proc, void *data) { continue_process(proc->pid); return CBS_CONT; } static enum callback_status is_main(struct process *proc, struct library *lib, void *data) { return CBS_STOP_IF(lib->type == LT_LIBTYPE_MAIN); } void process_hit_start(struct process *proc) { struct process *leader = proc->leader; assert(leader != NULL); struct library *mainlib = proc_each_library(leader, NULL, is_main, NULL); assert(mainlib != NULL); linkmap_init(leader, mainlib->dyn_addr); arch_dynlink_done(leader); } void open_pid(pid_t pid) { debug(DEBUG_PROCESS, "open_pid(pid=%d)", pid); /* If we are already tracing this guy, we should be seeing all * his children via normal tracing route. */ if (pid2proc(pid) != NULL) return; /* First, see if we can attach the requested PID itself. */ if (open_one_pid(pid) < 0) { fprintf(stderr, "Cannot attach to pid %u: %s\n", pid, strerror(errno)); trace_fail_warning(pid); return; } /* Now attach to all tasks that belong to that PID. There's a * race between process_tasks and open_one_pid. So when we * fail in open_one_pid below, we just do another round. * Chances are that by then that PID will have gone away, and * that's why we have seen the failure. The processes that we * manage to open_one_pid are stopped, so we should eventually * reach a point where process_tasks doesn't give any new * processes (because there's nobody left to produce * them). */ size_t old_ntasks = 0; int have_all; while (1) { pid_t *tasks; size_t ntasks; size_t i; if (process_tasks(pid, &tasks, &ntasks) < 0) { fprintf(stderr, "Cannot obtain tasks of pid %u: %s\n", pid, strerror(errno)); break; } have_all = 1; for (i = 0; i < ntasks; ++i) if (pid2proc(tasks[i]) == NULL && open_one_pid(tasks[i]) < 0) have_all = 0; free(tasks); if (have_all && old_ntasks == ntasks) break; old_ntasks = ntasks; } struct process *leader = pid2proc(pid)->leader; /* XXX Is there a way to figure out whether _start has * actually already been hit? */ process_hit_start(leader); /* Done. Continue everyone. */ each_task(leader, NULL, start_one_pid, NULL); } static enum callback_status find_proc(struct process *proc, void *data) { return CBS_STOP_IF(proc->pid == (pid_t)(uintptr_t)data); } struct process * pid2proc(pid_t pid) { return each_process(NULL, &find_proc, (void *)(uintptr_t)pid); } static struct process *list_of_processes = NULL; static void unlist_process(struct process *proc) { if (list_of_processes == proc) { list_of_processes = list_of_processes->next; return; } struct process *tmp; for (tmp = list_of_processes; ; tmp = tmp->next) { /* If the following assert fails, the process wasn't * in the list. */ assert(tmp->next != NULL); if (tmp->next == proc) { tmp->next = tmp->next->next; return; } } } struct process * each_process(struct process *start_after, enum callback_status(*cb)(struct process *proc, void *data), void *data) { struct process *it = start_after == NULL ? list_of_processes : start_after->next; while (it != NULL) { /* Callback might call remove_process. */ struct process *next = it->next; switch ((*cb)(it, data)) { case CBS_FAIL: /* XXX handle me */ case CBS_STOP: return it; case CBS_CONT: break; } it = next; } return NULL; } struct process * each_task(struct process *proc, struct process *start_after, enum callback_status(*cb)(struct process *proc, void *data), void *data) { assert(proc != NULL); struct process *it = start_after == NULL ? proc->leader : start_after->next; if (it != NULL) { struct process *leader = it->leader; while (it != NULL && it->leader == leader) { /* Callback might call remove_process. */ struct process *next = it->next; switch ((*cb)(it, data)) { case CBS_FAIL: /* XXX handle me */ case CBS_STOP: return it; case CBS_CONT: break; } it = next; } } return NULL; } static int add_process(struct process *proc, int was_exec) { struct process **leaderp = &list_of_processes; if (proc->pid) { pid_t tgid = process_leader(proc->pid); if (tgid == 0) /* Must have been terminated before we managed * to fully attach. */ return -1; if (tgid == proc->pid) { proc->leader = proc; } else { struct process *leader = pid2proc(tgid); proc->leader = leader; if (leader != NULL) leaderp = &leader->next; } } if (!was_exec) { proc->next = *leaderp; *leaderp = proc; } return 0; } void change_process_leader(struct process *proc, struct process *leader) { struct process **leaderp = &list_of_processes; if (proc->leader == leader) return; assert(leader != NULL); unlist_process(proc); if (proc != leader) leaderp = &leader->next; proc->leader = leader; proc->next = *leaderp; *leaderp = proc; } static enum callback_status clear_leader(struct process *proc, void *data) { debug(DEBUG_FUNCTION, "detach_task %d from leader %d", proc->pid, proc->leader->pid); proc->leader = NULL; return CBS_CONT; } void remove_process(struct process *proc) { debug(DEBUG_FUNCTION, "remove_proc(pid=%d)", proc->pid); if (proc->leader == proc) each_task(proc, NULL, &clear_leader, NULL); unlist_process(proc); process_removed(proc); process_destroy(proc); free(proc); } void install_event_handler(struct process *proc, struct event_handler *handler) { debug(DEBUG_FUNCTION, "install_event_handler(pid=%d, %p)", proc->pid, handler); assert(proc->event_handler == NULL); proc->event_handler = handler; } void destroy_event_handler(struct process *proc) { struct event_handler *handler = proc->event_handler; debug(DEBUG_FUNCTION, "destroy_event_handler(pid=%d, %p)", proc->pid, handler); assert(handler != NULL); if (handler->destroy != NULL) handler->destroy(handler); free(handler); proc->event_handler = NULL; } static int breakpoint_for_symbol(struct library_symbol *libsym, struct process *proc) { arch_addr_t bp_addr; assert(proc->leader == proc); /* Don't enable latent or delayed symbols. */ if (libsym->latent || libsym->delayed) { debug(DEBUG_FUNCTION, "delayed and/or latent breakpoint pid=%d, %s@%p", proc->pid, libsym->name, libsym->enter_addr); return 0; } bp_addr = sym2addr(proc, libsym); /* If there is an artificial breakpoint on the same address, * its libsym will be NULL, and we can smuggle our libsym * there. That artificial breakpoint is there presumably for * the callbacks, which we don't touch. If there is a real * breakpoint, then this is a bug. ltrace-elf.c should filter * symbols and ignore extra symbol aliases. * * The other direction is more complicated and currently not * supported. If a breakpoint has custom callbacks, it might * be also custom-allocated, and we would really need to swap * the two: delete the one now in the dictionary, swap values * around, and put the new breakpoint back in. */ struct breakpoint *bp; if (DICT_FIND_VAL(proc->breakpoints, &bp_addr, &bp) == 0) { /* MIPS backend makes duplicate requests. This is * likely a bug in the backend. Currently there's no * point assigning more than one symbol to a * breakpoint, because when it hits, we won't know * what to print out. But it's easier to fix it here * before someone who understands MIPS has the time to * look into it. So turn the sanity check off on * MIPS. References: * * http://lists.alioth.debian.org/pipermail/ltrace-devel/2012-November/000764.html * http://lists.alioth.debian.org/pipermail/ltrace-devel/2012-November/000770.html */ #ifndef __mips__ assert(bp->libsym == NULL); bp->libsym = libsym; #endif return 0; } bp = malloc(sizeof(*bp)); if (bp == NULL || breakpoint_init(bp, proc, bp_addr, libsym) < 0) { fail: free(bp); return -1; } if (proc_add_breakpoint(proc, bp) < 0) { breakpoint_destroy(bp); goto fail; } if (breakpoint_turn_on(bp, proc) < 0) { proc_remove_breakpoint(proc, bp); breakpoint_destroy(bp); goto fail; } return 0; } static enum callback_status cb_breakpoint_for_symbol(struct library_symbol *libsym, void *data) { return CBS_STOP_IF(breakpoint_for_symbol(libsym, data) < 0); } static int proc_activate_latent_symbol(struct process *proc, struct library_symbol *libsym) { assert(libsym->latent); libsym->latent = 0; debug(DEBUG_FUNCTION, "activated latent symbol"); return breakpoint_for_symbol(libsym, proc); } int proc_activate_delayed_symbol(struct process *proc, struct library_symbol *libsym) { assert(libsym->delayed); libsym->delayed = 0; debug(DEBUG_FUNCTION, "activated delayed symbol"); return breakpoint_for_symbol(libsym, proc); } struct activate_latent_in_context { struct process *proc; struct library_exported_names *exported_names; }; static enum callback_status activate_latent_in_cb(struct library_symbol *libsym, void *data) { struct activate_latent_in_context *ctx = (struct activate_latent_in_context*)data; if (libsym->latent && library_exported_names_contains(ctx->exported_names, libsym->name) != 0) proc_activate_latent_symbol(ctx->proc, libsym); return CBS_CONT; } static enum callback_status activate_latent_in(struct process *proc, struct library *lib, void *data) { struct library_symbol *libsym = NULL; struct library_exported_names *exported_names = (struct library_exported_names*)data; struct activate_latent_in_context ctx = {.proc = proc, .exported_names = exported_names}; if (library_each_symbol(lib, libsym, activate_latent_in_cb, &ctx) != NULL) return CBS_FAIL; return CBS_CONT; } void proc_add_library(struct process *proc, struct library *lib) { assert(lib->next == NULL); lib->next = proc->libraries; proc->libraries = lib; debug(DEBUG_PROCESS, "added library %s@%p (%s) to %d", lib->soname, lib->base, lib->pathname, proc->pid); #if defined(HAVE_LIBDW) Dwfl *dwfl = NULL; Dwfl_Module *dwfl_module = NULL; /* Setup module tracking for libdwfl unwinding. */ struct process *leader = proc->leader; dwfl = leader->dwfl; if (dwfl == NULL) { static const Dwfl_Callbacks proc_callbacks = { .find_elf = dwfl_linux_proc_find_elf, .find_debuginfo = dwfl_standard_find_debuginfo }; dwfl = dwfl_begin(&proc_callbacks); if (dwfl == NULL) fprintf(stderr, "Couldn't initialize libdwfl unwinding " "for process %d: %s\n", leader->pid, dwfl_errmsg (-1)); } if (dwfl != NULL) { dwfl_report_begin_add(dwfl); dwfl_module = dwfl_report_elf(dwfl, lib->soname, lib->pathname, -1, (GElf_Addr) lib->base, false); if (dwfl_module == NULL) fprintf(stderr, "dwfl_report_elf %s@%p (%s) %d: %s\n", lib->soname, lib->base, lib->pathname, proc->pid, dwfl_errmsg (-1)); dwfl_report_end(dwfl, NULL, NULL); if (options.bt_depth > 0) { if (proc->should_attach_dwfl) { int r = dwfl_linux_proc_attach(dwfl, leader->pid, true); proc->should_attach_dwfl = 0; if (r != 0) { const char *msg; dwfl_end(dwfl); if (r < 0) msg = dwfl_errmsg(-1); else msg = strerror(r); fprintf(stderr, "Couldn't initialize " "libdwfl (unwinding, prototype " "import) for process %d: %s\n", leader->pid, msg); } } } } lib->dwfl_module = dwfl_module; leader->dwfl = dwfl; #endif /* defined(HAVE_LIBDW) */ /* Insert breakpoints for all active (non-latent) symbols. */ struct library_symbol *libsym = NULL; while ((libsym = library_each_symbol(lib, libsym, cb_breakpoint_for_symbol, proc)) != NULL) fprintf(stderr, "Couldn't insert breakpoint for %s to %d: %s.\n", libsym->name, proc->pid, strerror(errno)); if (lib->should_activate_latent != 0) { /* Look through export list of the new library and compare it * with latent symbols of all libraries (including this * library itself). */ struct library *lib2 = NULL; while ((lib2 = proc_each_library(proc, lib2, activate_latent_in, &lib->exported_names)) != NULL) fprintf(stderr, "Couldn't activate latent symbols " "for %s in %d: %s.\n", lib2->soname, proc->pid, strerror(errno)); } } int proc_remove_library(struct process *proc, struct library *lib) { struct library **libp; for (libp = &proc->libraries; *libp != NULL; libp = &(*libp)->next) if (*libp == lib) { *libp = lib->next; return 0; } return -1; } struct library * proc_each_library(struct process *proc, struct library *it, enum callback_status (*cb)(struct process *proc, struct library *lib, void *data), void *data) { if (it == NULL) it = proc->libraries; else it = it->next; while (it != NULL) { struct library *next = it->next; switch (cb(proc, it, data)) { case CBS_FAIL: /* XXX handle me */ case CBS_STOP: return it; case CBS_CONT: break; } it = next; } return NULL; } static void check_leader(struct process *proc) { /* Only the group leader should be getting the breakpoints and * thus have ->breakpoint initialized. */ assert(proc->leader != NULL); assert(proc->leader == proc); assert(proc->breakpoints != NULL); } int proc_add_breakpoint(struct process *proc, struct breakpoint *bp) { debug(DEBUG_FUNCTION, "proc_add_breakpoint(pid=%d, %s@%p)", proc->pid, breakpoint_name(bp), bp->addr); check_leader(proc); /* XXX We might merge bp->libsym instead of the following * assert, but that's not necessary right now. Read the * comment in breakpoint_for_symbol. */ assert(dict_find(proc->breakpoints, &bp->addr) == NULL); if (DICT_INSERT(proc->breakpoints, &bp->addr, &bp) < 0) { fprintf(stderr, "couldn't enter breakpoint %s@%p to dictionary: %s\n", breakpoint_name(bp), bp->addr, strerror(errno)); return -1; } return 0; } void proc_remove_breakpoint(struct process *proc, struct breakpoint *bp) { debug(DEBUG_FUNCTION, "proc_remove_breakpoint(pid=%d, %s@%p)", proc->pid, breakpoint_name(bp), bp->addr); check_leader(proc); int rc = DICT_ERASE(proc->breakpoints, &bp->addr, struct breakpoint *, NULL, NULL, NULL); assert(rc == 0); } struct each_breakpoint_data { struct process *proc; enum callback_status (*cb)(struct process *proc, struct breakpoint *bp, void *data); void *cb_data; }; static enum callback_status each_breakpoint_cb(arch_addr_t *key, struct breakpoint **bpp, void *d) { struct each_breakpoint_data *data = d; return data->cb(data->proc, *bpp, data->cb_data); } arch_addr_t * proc_each_breakpoint(struct process *proc, arch_addr_t *start, enum callback_status (*cb)(struct process *proc, struct breakpoint *bp, void *data), void *data) { struct each_breakpoint_data dd = { .proc = proc, .cb = cb, .cb_data = data, }; return DICT_EACH(proc->breakpoints, arch_addr_t, struct breakpoint *, start, &each_breakpoint_cb, &dd); } int proc_find_symbol(struct process *proc, struct library_symbol *sym, struct library **retlib, struct library_symbol **retsym) { struct library *lib = sym->lib; assert(lib != NULL); struct library *flib = proc_each_library(proc, NULL, library_with_key_cb, &lib->key); if (flib == NULL) return -1; struct library_symbol *fsym = library_each_symbol(flib, NULL, library_symbol_named_cb, (char *)sym->name); if (fsym == NULL) return -1; if (retlib != NULL) *retlib = flib; if (retsym != NULL) *retsym = fsym; return 0; } struct library_symbol * proc_each_symbol(struct process *proc, struct library_symbol *start_after, enum callback_status (*cb)(struct library_symbol *, void *), void *data) { struct library *lib; for (lib = start_after != NULL ? start_after->lib : proc->libraries; lib != NULL; lib = lib->next) { start_after = library_each_symbol(lib, start_after, cb, data); if (start_after != NULL) return start_after; } return NULL; } #define DEF_READER(NAME, SIZE) \ int \ NAME(struct process *proc, arch_addr_t addr, \ uint##SIZE##_t *lp) \ { \ union { \ uint##SIZE##_t dst; \ char buf[0]; \ } u; \ if (umovebytes(proc, addr, &u.buf, sizeof(u.dst)) \ != sizeof(u.dst)) \ return -1; \ *lp = u.dst; \ return 0; \ } DEF_READER(proc_read_8, 8) DEF_READER(proc_read_16, 16) DEF_READER(proc_read_32, 32) DEF_READER(proc_read_64, 64) #undef DEF_READER