summaryrefslogtreecommitdiff
path: root/libsanitizer/lsan/lsan_common.cc
blob: 6d674c5e437627e2e4d9cd60d5f512e2ada031af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
//=-- lsan_common.cc ------------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//

#include "lsan_common.h"

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_report_decorator.h"

#if CAN_SANITIZE_LEAKS
namespace __lsan {

// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
// also to protect the global list of root regions.
BlockingMutex global_mutex(LINKER_INITIALIZED);

THREADLOCAL int disable_counter;
bool DisabledInThisThread() { return disable_counter > 0; }

Flags lsan_flags;

void Flags::SetDefaults() {
#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
#include "lsan_flags.inc"
#undef LSAN_FLAG
}

void RegisterLsanFlags(FlagParser *parser, Flags *f) {
#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
  RegisterFlag(parser, #Name, Description, &f->Name);
#include "lsan_flags.inc"
#undef LSAN_FLAG
}

#define LOG_POINTERS(...)                           \
  do {                                              \
    if (flags()->log_pointers) Report(__VA_ARGS__); \
  } while (0);

#define LOG_THREADS(...)                           \
  do {                                             \
    if (flags()->log_threads) Report(__VA_ARGS__); \
  } while (0);

ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
static SuppressionContext *suppression_ctx = nullptr;
static const char kSuppressionLeak[] = "leak";
static const char *kSuppressionTypes[] = { kSuppressionLeak };

void InitializeSuppressions() {
  CHECK_EQ(nullptr, suppression_ctx);
  suppression_ctx = new (suppression_placeholder) // NOLINT
      SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
  suppression_ctx->ParseFromFile(flags()->suppressions);
  if (&__lsan_default_suppressions)
    suppression_ctx->Parse(__lsan_default_suppressions());
}

static SuppressionContext *GetSuppressionContext() {
  CHECK(suppression_ctx);
  return suppression_ctx;
}

struct RootRegion {
  const void *begin;
  uptr size;
};

InternalMmapVector<RootRegion> *root_regions;

void InitializeRootRegions() {
  CHECK(!root_regions);
  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
  root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
}

void InitCommonLsan() {
  InitializeRootRegions();
  if (common_flags()->detect_leaks) {
    // Initialization which can fail or print warnings should only be done if
    // LSan is actually enabled.
    InitializeSuppressions();
    InitializePlatformSpecificModules();
  }
}

class Decorator: public __sanitizer::SanitizerCommonDecorator {
 public:
  Decorator() : SanitizerCommonDecorator() { }
  const char *Error() { return Red(); }
  const char *Leak() { return Blue(); }
  const char *End() { return Default(); }
};

static inline bool CanBeAHeapPointer(uptr p) {
  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
  // bound on heap addresses.
  const uptr kMinAddress = 4 * 4096;
  if (p < kMinAddress) return false;
#if defined(__x86_64__)
  // Accept only canonical form user-space addresses.
  return ((p >> 47) == 0);
#elif defined(__mips64)
  return ((p >> 40) == 0);
#elif defined(__aarch64__)
  unsigned runtimeVMA =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
  return ((p >> runtimeVMA) == 0);
#else
  return true;
#endif
}

// Scans the memory range, looking for byte patterns that point into allocator
// chunks. Marks those chunks with |tag| and adds them to |frontier|.
// There are two usage modes for this function: finding reachable chunks
// (|tag| = kReachable) and finding indirectly leaked chunks
// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
// so |frontier| = 0.
void ScanRangeForPointers(uptr begin, uptr end,
                          Frontier *frontier,
                          const char *region_type, ChunkTag tag) {
  CHECK(tag == kReachable || tag == kIndirectlyLeaked);
  const uptr alignment = flags()->pointer_alignment();
  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
  uptr pp = begin;
  if (pp % alignment)
    pp = pp + alignment - pp % alignment;
  for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
    void *p = *reinterpret_cast<void **>(pp);
    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
    uptr chunk = PointsIntoChunk(p);
    if (!chunk) continue;
    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
    if (chunk == begin) continue;
    LsanMetadata m(chunk);
    if (m.tag() == kReachable || m.tag() == kIgnored) continue;

    // Do this check relatively late so we can log only the interesting cases.
    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
      LOG_POINTERS(
          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
          "%zu.\n",
          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
      continue;
    }

    m.set_tag(tag);
    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
                 chunk, chunk + m.requested_size(), m.requested_size());
    if (frontier)
      frontier->push_back(chunk);
  }
}

void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
}

// Scans thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
                           Frontier *frontier) {
  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
  uptr registers_end = registers_begin + registers.size();
  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
    LOG_THREADS("Processing thread %d.\n", os_id);
    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
                                              &tls_begin, &tls_end,
                                              &cache_begin, &cache_end);
    if (!thread_found) {
      // If a thread can't be found in the thread registry, it's probably in the
      // process of destruction. Log this event and move on.
      LOG_THREADS("Thread %d not found in registry.\n", os_id);
      continue;
    }
    uptr sp;
    bool have_registers =
        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
    if (!have_registers) {
      Report("Unable to get registers from thread %d.\n");
      // If unable to get SP, consider the entire stack to be reachable.
      sp = stack_begin;
    }

    if (flags()->use_registers && have_registers)
      ScanRangeForPointers(registers_begin, registers_end, frontier,
                           "REGISTERS", kReachable);

    if (flags()->use_stacks) {
      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
      if (sp < stack_begin || sp >= stack_end) {
        // SP is outside the recorded stack range (e.g. the thread is running a
        // signal handler on alternate stack). Again, consider the entire stack
        // range to be reachable.
        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
      } else {
        // Shrink the stack range to ignore out-of-scope values.
        stack_begin = sp;
      }
      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
                           kReachable);
      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
    }

    if (flags()->use_tls) {
      LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
      if (cache_begin == cache_end) {
        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
      } else {
        // Because LSan should not be loaded with dlopen(), we can assume
        // that allocator cache will be part of static TLS image.
        CHECK_LE(tls_begin, cache_begin);
        CHECK_GE(tls_end, cache_end);
        if (tls_begin < cache_begin)
          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
                               kReachable);
        if (tls_end > cache_end)
          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
      }
    }
  }
}

static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
                              uptr root_end) {
  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
  uptr begin, end, prot;
  while (proc_maps.Next(&begin, &end,
                        /*offset*/ nullptr, /*filename*/ nullptr,
                        /*filename_size*/ 0, &prot)) {
    uptr intersection_begin = Max(root_begin, begin);
    uptr intersection_end = Min(end, root_end);
    if (intersection_begin >= intersection_end) continue;
    bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
    LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
                 root_begin, root_end, begin, end,
                 is_readable ? "readable" : "unreadable");
    if (is_readable)
      ScanRangeForPointers(intersection_begin, intersection_end, frontier,
                           "ROOT", kReachable);
  }
}

// Scans root regions for heap pointers.
static void ProcessRootRegions(Frontier *frontier) {
  if (!flags()->use_root_regions) return;
  CHECK(root_regions);
  for (uptr i = 0; i < root_regions->size(); i++) {
    RootRegion region = (*root_regions)[i];
    uptr begin_addr = reinterpret_cast<uptr>(region.begin);
    ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
  }
}

static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
  while (frontier->size()) {
    uptr next_chunk = frontier->back();
    frontier->pop_back();
    LsanMetadata m(next_chunk);
    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
                         "HEAP", tag);
  }
}

// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
// which are reachable from it as indirectly leaked.
static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() != kReachable) {
    ScanRangeForPointers(chunk, chunk + m.requested_size(),
                         /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
  }
}

// ForEachChunk callback. If chunk is marked as ignored, adds its address to
// frontier.
static void CollectIgnoredCb(uptr chunk, void *arg) {
  CHECK(arg);
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() == kIgnored) {
    LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
                 chunk, chunk + m.requested_size(), m.requested_size());
    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
  }
}

// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
  // Holds the flood fill frontier.
  Frontier frontier(1);

  ForEachChunk(CollectIgnoredCb, &frontier);
  ProcessGlobalRegions(&frontier);
  ProcessThreads(suspended_threads, &frontier);
  ProcessRootRegions(&frontier);
  FloodFillTag(&frontier, kReachable);

  // The check here is relatively expensive, so we do this in a separate flood
  // fill. That way we can skip the check for chunks that are reachable
  // otherwise.
  LOG_POINTERS("Processing platform-specific allocations.\n");
  CHECK_EQ(0, frontier.size());
  ProcessPlatformSpecificAllocations(&frontier);
  FloodFillTag(&frontier, kReachable);

  // Iterate over leaked chunks and mark those that are reachable from other
  // leaked chunks.
  LOG_POINTERS("Scanning leaked chunks.\n");
  ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
}

// ForEachChunk callback. Resets the tags to pre-leak-check state.
static void ResetTagsCb(uptr chunk, void *arg) {
  (void)arg;
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() != kIgnored)
    m.set_tag(kDirectlyLeaked);
}

static void PrintStackTraceById(u32 stack_trace_id) {
  CHECK(stack_trace_id);
  StackDepotGet(stack_trace_id).Print();
}

// ForEachChunk callback. Aggregates information about unreachable chunks into
// a LeakReport.
static void CollectLeaksCb(uptr chunk, void *arg) {
  CHECK(arg);
  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (!m.allocated()) return;
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
    u32 resolution = flags()->resolution;
    u32 stack_trace_id = 0;
    if (resolution > 0) {
      StackTrace stack = StackDepotGet(m.stack_trace_id());
      stack.size = Min(stack.size, resolution);
      stack_trace_id = StackDepotPut(stack);
    } else {
      stack_trace_id = m.stack_trace_id();
    }
    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
                                m.tag());
  }
}

static void PrintMatchedSuppressions() {
  InternalMmapVector<Suppression *> matched(1);
  GetSuppressionContext()->GetMatched(&matched);
  if (!matched.size())
    return;
  const char *line = "-----------------------------------------------------";
  Printf("%s\n", line);
  Printf("Suppressions used:\n");
  Printf("  count      bytes template\n");
  for (uptr i = 0; i < matched.size(); i++)
    Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
        &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
  Printf("%s\n\n", line);
}

struct CheckForLeaksParam {
  bool success;
  LeakReport leak_report;
};

static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
                                  void *arg) {
  CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
  CHECK(param);
  CHECK(!param->success);
  ClassifyAllChunks(suspended_threads);
  ForEachChunk(CollectLeaksCb, &param->leak_report);
  // Clean up for subsequent leak checks. This assumes we did not overwrite any
  // kIgnored tags.
  ForEachChunk(ResetTagsCb, nullptr);
  param->success = true;
}

static bool CheckForLeaks() {
  if (&__lsan_is_turned_off && __lsan_is_turned_off())
      return false;
  EnsureMainThreadIDIsCorrect();
  CheckForLeaksParam param;
  param.success = false;
  LockThreadRegistry();
  LockAllocator();
  DoStopTheWorld(CheckForLeaksCallback, &param);
  UnlockAllocator();
  UnlockThreadRegistry();

  if (!param.success) {
    Report("LeakSanitizer has encountered a fatal error.\n");
    Die();
  }
  param.leak_report.ApplySuppressions();
  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
  if (unsuppressed_count > 0) {
    Decorator d;
    Printf("\n"
           "================================================================="
           "\n");
    Printf("%s", d.Error());
    Report("ERROR: LeakSanitizer: detected memory leaks\n");
    Printf("%s", d.End());
    param.leak_report.ReportTopLeaks(flags()->max_leaks);
  }
  if (common_flags()->print_suppressions)
    PrintMatchedSuppressions();
  if (unsuppressed_count > 0) {
    param.leak_report.PrintSummary();
    return true;
  }
  return false;
}

void DoLeakCheck() {
  BlockingMutexLock l(&global_mutex);
  static bool already_done;
  if (already_done) return;
  already_done = true;
  bool have_leaks = CheckForLeaks();
  if (!have_leaks) {
    return;
  }
  if (common_flags()->exitcode) {
    Die();
  }
}

static int DoRecoverableLeakCheck() {
  BlockingMutexLock l(&global_mutex);
  bool have_leaks = CheckForLeaks();
  return have_leaks ? 1 : 0;
}

static Suppression *GetSuppressionForAddr(uptr addr) {
  Suppression *s = nullptr;

  // Suppress by module name.
  SuppressionContext *suppressions = GetSuppressionContext();
  if (const char *module_name =
          Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
    if (suppressions->Match(module_name, kSuppressionLeak, &s))
      return s;

  // Suppress by file or function name.
  SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
    if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
        suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
      break;
    }
  }
  frames->ClearAll();
  return s;
}

static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
  StackTrace stack = StackDepotGet(stack_trace_id);
  for (uptr i = 0; i < stack.size; i++) {
    Suppression *s = GetSuppressionForAddr(
        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
    if (s) return s;
  }
  return nullptr;
}

///// LeakReport implementation. /////

// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
// in real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 5000;

void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
                                uptr leaked_size, ChunkTag tag) {
  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
  bool is_directly_leaked = (tag == kDirectlyLeaked);
  uptr i;
  for (i = 0; i < leaks_.size(); i++) {
    if (leaks_[i].stack_trace_id == stack_trace_id &&
        leaks_[i].is_directly_leaked == is_directly_leaked) {
      leaks_[i].hit_count++;
      leaks_[i].total_size += leaked_size;
      break;
    }
  }
  if (i == leaks_.size()) {
    if (leaks_.size() == kMaxLeaksConsidered) return;
    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
                  is_directly_leaked, /* is_suppressed */ false };
    leaks_.push_back(leak);
  }
  if (flags()->report_objects) {
    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
    leaked_objects_.push_back(obj);
  }
}

static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
    return leak1.total_size > leak2.total_size;
  else
    return leak1.is_directly_leaked;
}

void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  Printf("\n");
  if (leaks_.size() == kMaxLeaksConsidered)
    Printf("Too many leaks! Only the first %zu leaks encountered will be "
           "reported.\n",
           kMaxLeaksConsidered);

  uptr unsuppressed_count = UnsuppressedLeakCount();
  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
    Printf("The %zu top leak(s):\n", num_leaks_to_report);
  InternalSort(&leaks_, leaks_.size(), LeakComparator);
  uptr leaks_reported = 0;
  for (uptr i = 0; i < leaks_.size(); i++) {
    if (leaks_[i].is_suppressed) continue;
    PrintReportForLeak(i);
    leaks_reported++;
    if (leaks_reported == num_leaks_to_report) break;
  }
  if (leaks_reported < unsuppressed_count) {
    uptr remaining = unsuppressed_count - leaks_reported;
    Printf("Omitting %zu more leak(s).\n", remaining);
  }
}

void LeakReport::PrintReportForLeak(uptr index) {
  Decorator d;
  Printf("%s", d.Leak());
  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
         leaks_[index].total_size, leaks_[index].hit_count);
  Printf("%s", d.End());

  PrintStackTraceById(leaks_[index].stack_trace_id);

  if (flags()->report_objects) {
    Printf("Objects leaked above:\n");
    PrintLeakedObjectsForLeak(index);
    Printf("\n");
  }
}

void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
  u32 leak_id = leaks_[index].id;
  for (uptr j = 0; j < leaked_objects_.size(); j++) {
    if (leaked_objects_[j].leak_id == leak_id)
      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
             leaked_objects_[j].size);
  }
}

void LeakReport::PrintSummary() {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  uptr bytes = 0, allocations = 0;
  for (uptr i = 0; i < leaks_.size(); i++) {
      if (leaks_[i].is_suppressed) continue;
      bytes += leaks_[i].total_size;
      allocations += leaks_[i].hit_count;
  }
  InternalScopedString summary(kMaxSummaryLength);
  summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
                 allocations);
  ReportErrorSummary(summary.data());
}

void LeakReport::ApplySuppressions() {
  for (uptr i = 0; i < leaks_.size(); i++) {
    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
    if (s) {
      s->weight += leaks_[i].total_size;
      atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
          leaks_[i].hit_count);
      leaks_[i].is_suppressed = true;
    }
  }
}

uptr LeakReport::UnsuppressedLeakCount() {
  uptr result = 0;
  for (uptr i = 0; i < leaks_.size(); i++)
    if (!leaks_[i].is_suppressed) result++;
  return result;
}

} // namespace __lsan
#endif // CAN_SANITIZE_LEAKS

using namespace __lsan;  // NOLINT

extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_ignore_object(const void *p) {
#if CAN_SANITIZE_LEAKS
  if (!common_flags()->detect_leaks)
    return;
  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
  // locked.
  BlockingMutexLock l(&global_mutex);
  IgnoreObjectResult res = IgnoreObjectLocked(p);
  if (res == kIgnoreObjectInvalid)
    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
  if (res == kIgnoreObjectAlreadyIgnored)
    VReport(1, "__lsan_ignore_object(): "
           "heap object at %p is already being ignored\n", p);
  if (res == kIgnoreObjectSuccess)
    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_register_root_region(const void *begin, uptr size) {
#if CAN_SANITIZE_LEAKS
  BlockingMutexLock l(&global_mutex);
  CHECK(root_regions);
  RootRegion region = {begin, size};
  root_regions->push_back(region);
  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_unregister_root_region(const void *begin, uptr size) {
#if CAN_SANITIZE_LEAKS
  BlockingMutexLock l(&global_mutex);
  CHECK(root_regions);
  bool removed = false;
  for (uptr i = 0; i < root_regions->size(); i++) {
    RootRegion region = (*root_regions)[i];
    if (region.begin == begin && region.size == size) {
      removed = true;
      uptr last_index = root_regions->size() - 1;
      (*root_regions)[i] = (*root_regions)[last_index];
      root_regions->pop_back();
      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
      break;
    }
  }
  if (!removed) {
    Report(
        "__lsan_unregister_root_region(): region at %p of size %llu has not "
        "been registered.\n",
        begin, size);
    Die();
  }
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_disable() {
#if CAN_SANITIZE_LEAKS
  __lsan::disable_counter++;
#endif
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_enable() {
#if CAN_SANITIZE_LEAKS
  if (!__lsan::disable_counter && common_flags()->detect_leaks) {
    Report("Unmatched call to __lsan_enable().\n");
    Die();
  }
  __lsan::disable_counter--;
#endif
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_do_leak_check() {
#if CAN_SANITIZE_LEAKS
  if (common_flags()->detect_leaks)
    __lsan::DoLeakCheck();
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
int __lsan_do_recoverable_leak_check() {
#if CAN_SANITIZE_LEAKS
  if (common_flags()->detect_leaks)
    return __lsan::DoRecoverableLeakCheck();
#endif // CAN_SANITIZE_LEAKS
  return 0;
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
int __lsan_is_turned_off() {
  return 0;
}
#endif
} // extern "C"