1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
/* s_cosl.c -- long double version of s_cos.c.
* Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cosl(x)
* Return cosine function of x.
*
* kernel function:
* __kernel_sinl ... sine function on [-pi/4,pi/4]
* __kernel_cosl ... cosine function on [-pi/4,pi/4]
* __ieee754_rem_pio2l ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "quadmath-imp.h"
__float128
cosq (__float128 x)
{
__float128 y[2],z=0.0L;
int64_t n, ix;
/* High word of x. */
GET_FLT128_MSW64(ix,x);
/* |x| ~< pi/4 */
ix &= 0x7fffffffffffffffLL;
if(ix <= 0x3ffe921fb54442d1LL)
return __kernel_cosq(x,z);
/* cos(Inf or NaN) is NaN */
else if (ix>=0x7fff000000000000LL) {
if (ix == 0x7fff000000000000LL) {
GET_FLT128_LSW64(n,x);
}
return x-x;
}
/* argument reduction needed */
else {
n = rem_pio2q(x,y);
switch(n&3) {
case 0: return __kernel_cosq(y[0],y[1]);
case 1: return -__kernel_sinq(y[0],y[1],1);
case 2: return -__kernel_cosq(y[0],y[1]);
default:
return __kernel_sinq(y[0],y[1],1);
}
}
}
|