summaryrefslogtreecommitdiff
path: root/gcc/predict.c
blob: d8669e39327b9c9a11cdba7192d12ae948e74e92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
/* Branch prediction routines for the GNU compiler.
   Copyright (C) 2000-2014 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* References:

   [1] "Branch Prediction for Free"
       Ball and Larus; PLDI '93.
   [2] "Static Branch Frequency and Program Profile Analysis"
       Wu and Larus; MICRO-27.
   [3] "Corpus-based Static Branch Prediction"
       Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "calls.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "function.h"
#include "except.h"
#include "diagnostic-core.h"
#include "recog.h"
#include "expr.h"
#include "predict.h"
#include "coverage.h"
#include "sreal.h"
#include "params.h"
#include "target.h"
#include "cfgloop.h"
#include "pointer-set.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimple-ssa.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "cfgloop.h"

/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
		   1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX.  */
static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
	     real_inv_br_prob_base, real_one_half, real_bb_freq_max;

static void combine_predictions_for_insn (rtx, basic_block);
static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
static bool can_predict_insn_p (const_rtx);

/* Information we hold about each branch predictor.
   Filled using information from predict.def.  */

struct predictor_info
{
  const char *const name;	/* Name used in the debugging dumps.  */
  const int hitrate;		/* Expected hitrate used by
				   predict_insn_def call.  */
  const int flags;
};

/* Use given predictor without Dempster-Shaffer theory if it matches
   using first_match heuristics.  */
#define PRED_FLAG_FIRST_MATCH 1

/* Recompute hitrate in percent to our representation.  */

#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)

#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
static const struct predictor_info predictor_info[]= {
#include "predict.def"

  /* Upper bound on predictors.  */
  {NULL, 0, 0}
};
#undef DEF_PREDICTOR

/* Return TRUE if frequency FREQ is considered to be hot.  */

static inline bool
maybe_hot_frequency_p (struct function *fun, int freq)
{
  struct cgraph_node *node = cgraph_get_node (fun->decl);
  if (!profile_info || !flag_branch_probabilities)
    {
      if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
        return false;
      if (node->frequency == NODE_FREQUENCY_HOT)
        return true;
    }
  if (profile_status_for_fn (fun) == PROFILE_ABSENT)
    return true;
  if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
      && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
    return false;
  if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
    return false;
  if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
	      / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
    return false;
  return true;
}

static gcov_type min_count = -1;

/* Determine the threshold for hot BB counts.  */

gcov_type
get_hot_bb_threshold ()
{
  gcov_working_set_t *ws;
  if (min_count == -1)
    {
      ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
      gcc_assert (ws);
      min_count = ws->min_counter;
    }
  return min_count;
}

/* Set the threshold for hot BB counts.  */

void
set_hot_bb_threshold (gcov_type min)
{
  min_count = min;
}

/* Return TRUE if frequency FREQ is considered to be hot.  */

static inline bool
maybe_hot_count_p (struct function *fun, gcov_type count)
{
  if (fun && profile_status_for_fn (fun) != PROFILE_READ)
    return true;
  /* Code executed at most once is not hot.  */
  if (profile_info->runs >= count)
    return false;
  return (count >= get_hot_bb_threshold ());
}

/* Return true in case BB can be CPU intensive and should be optimized
   for maximal performance.  */

bool
maybe_hot_bb_p (struct function *fun, const_basic_block bb)
{
  gcc_checking_assert (fun);
  if (profile_status_for_fn (fun) == PROFILE_READ)
    return maybe_hot_count_p (fun, bb->count);
  return maybe_hot_frequency_p (fun, bb->frequency);
}

/* Return true if the call can be hot.  */

bool
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
{
  if (profile_info && flag_branch_probabilities
      && !maybe_hot_count_p (NULL,
                             edge->count))
    return false;
  if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
      || (edge->callee
	  && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
    return false;
  if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
      && (edge->callee
	  && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
    return false;
  if (optimize_size)
    return false;
  if (edge->caller->frequency == NODE_FREQUENCY_HOT)
    return true;
  if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
      && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
    return false;
  if (flag_guess_branch_prob)
    {
      if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
	  || edge->frequency <= (CGRAPH_FREQ_BASE
				 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
        return false;
    }
  return true;
}

/* Return true in case BB can be CPU intensive and should be optimized
   for maximal performance.  */

bool
maybe_hot_edge_p (edge e)
{
  if (profile_status_for_fn (cfun) == PROFILE_READ)
    return maybe_hot_count_p (cfun, e->count);
  return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
}



/* Return true if profile COUNT and FREQUENCY, or function FUN static
   node frequency reflects never being executed.  */
   
static bool
probably_never_executed (struct function *fun,
                         gcov_type count, int frequency)
{
  gcc_checking_assert (fun);
  if (profile_status_for_fn (cfun) == PROFILE_READ)
    {
      int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
      if (count * unlikely_count_fraction >= profile_info->runs)
	return false;
      if (!frequency)
	return true;
      if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
	return false;
      if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
	{
          gcov_type computed_count;
          /* Check for possibility of overflow, in which case entry bb count
             is large enough to do the division first without losing much
             precision.  */
	  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
	      REG_BR_PROB_BASE)
            {
              gcov_type scaled_count
		  = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
	     unlikely_count_fraction;
	      computed_count = RDIV (scaled_count,
				     ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
            }
          else
            {
	      computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
				     ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
              computed_count *= frequency * unlikely_count_fraction;
            }
          if (computed_count >= profile_info->runs)
            return false;
	}
      return true;
    }
  if ((!profile_info || !flag_branch_probabilities)
      && (cgraph_get_node (fun->decl)->frequency
	  == NODE_FREQUENCY_UNLIKELY_EXECUTED))
    return true;
  return false;
}


/* Return true in case BB is probably never executed.  */

bool
probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
{
  return probably_never_executed (fun, bb->count, bb->frequency);
}


/* Return true in case edge E is probably never executed.  */

bool
probably_never_executed_edge_p (struct function *fun, edge e)
{
  return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
}

/* Return true if NODE should be optimized for size.  */

bool
cgraph_optimize_for_size_p (struct cgraph_node *node)
{
  if (optimize_size)
    return true;
  if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
    return true;
  else
    return false;
}

/* Return true when current function should always be optimized for size.  */

bool
optimize_function_for_size_p (struct function *fun)
{
  if (optimize_size)
    return true;
  if (!fun || !fun->decl)
    return false;
  return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
}

/* Return true when current function should always be optimized for speed.  */

bool
optimize_function_for_speed_p (struct function *fun)
{
  return !optimize_function_for_size_p (fun);
}

/* Return TRUE when BB should be optimized for size.  */

bool
optimize_bb_for_size_p (const_basic_block bb)
{
  return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
}

/* Return TRUE when BB should be optimized for speed.  */

bool
optimize_bb_for_speed_p (const_basic_block bb)
{
  return !optimize_bb_for_size_p (bb);
}

/* Return TRUE when BB should be optimized for size.  */

bool
optimize_edge_for_size_p (edge e)
{
  return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
}

/* Return TRUE when BB should be optimized for speed.  */

bool
optimize_edge_for_speed_p (edge e)
{
  return !optimize_edge_for_size_p (e);
}

/* Return TRUE when BB should be optimized for size.  */

bool
optimize_insn_for_size_p (void)
{
  return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
}

/* Return TRUE when BB should be optimized for speed.  */

bool
optimize_insn_for_speed_p (void)
{
  return !optimize_insn_for_size_p ();
}

/* Return TRUE when LOOP should be optimized for size.  */

bool
optimize_loop_for_size_p (struct loop *loop)
{
  return optimize_bb_for_size_p (loop->header);
}

/* Return TRUE when LOOP should be optimized for speed.  */

bool
optimize_loop_for_speed_p (struct loop *loop)
{
  return optimize_bb_for_speed_p (loop->header);
}

/* Return TRUE when LOOP nest should be optimized for speed.  */

bool
optimize_loop_nest_for_speed_p (struct loop *loop)
{
  struct loop *l = loop;
  if (optimize_loop_for_speed_p (loop))
    return true;
  l = loop->inner;
  while (l && l != loop)
    {
      if (optimize_loop_for_speed_p (l))
        return true;
      if (l->inner)
        l = l->inner;
      else if (l->next)
        l = l->next;
      else
        {
	  while (l != loop && !l->next)
	    l = loop_outer (l);
	  if (l != loop)
	    l = l->next;
	}
    }
  return false;
}

/* Return TRUE when LOOP nest should be optimized for size.  */

bool
optimize_loop_nest_for_size_p (struct loop *loop)
{
  return !optimize_loop_nest_for_speed_p (loop);
}

/* Return true when edge E is likely to be well predictable by branch
   predictor.  */

bool
predictable_edge_p (edge e)
{
  if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
    return false;
  if ((e->probability
       <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
      || (REG_BR_PROB_BASE - e->probability
          <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
    return true;
  return false;
}


/* Set RTL expansion for BB profile.  */

void
rtl_profile_for_bb (basic_block bb)
{
  crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
}

/* Set RTL expansion for edge profile.  */

void
rtl_profile_for_edge (edge e)
{
  crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
}

/* Set RTL expansion to default mode (i.e. when profile info is not known).  */
void
default_rtl_profile (void)
{
  crtl->maybe_hot_insn_p = true;
}

/* Return true if the one of outgoing edges is already predicted by
   PREDICTOR.  */

bool
rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
{
  rtx note;
  if (!INSN_P (BB_END (bb)))
    return false;
  for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PRED
	&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
      return true;
  return false;
}

/* This map contains for a basic block the list of predictions for the
   outgoing edges.  */

static struct pointer_map_t *bb_predictions;

/*  Structure representing predictions in tree level. */

struct edge_prediction {
    struct edge_prediction *ep_next;
    edge ep_edge;
    enum br_predictor ep_predictor;
    int ep_probability;
};

/* Return true if the one of outgoing edges is already predicted by
   PREDICTOR.  */

bool
gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
{
  struct edge_prediction *i;
  void **preds = pointer_map_contains (bb_predictions, bb);

  if (!preds)
    return false;

  for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
    if (i->ep_predictor == predictor)
      return true;
  return false;
}

/* Return true when the probability of edge is reliable.

   The profile guessing code is good at predicting branch outcome (ie.
   taken/not taken), that is predicted right slightly over 75% of time.
   It is however notoriously poor on predicting the probability itself.
   In general the profile appear a lot flatter (with probabilities closer
   to 50%) than the reality so it is bad idea to use it to drive optimization
   such as those disabling dynamic branch prediction for well predictable
   branches.

   There are two exceptions - edges leading to noreturn edges and edges
   predicted by number of iterations heuristics are predicted well.  This macro
   should be able to distinguish those, but at the moment it simply check for
   noreturn heuristic that is only one giving probability over 99% or bellow
   1%.  In future we might want to propagate reliability information across the
   CFG if we find this information useful on multiple places.   */
static bool
probability_reliable_p (int prob)
{
  return (profile_status_for_fn (cfun) == PROFILE_READ
	  || (profile_status_for_fn (cfun) == PROFILE_GUESSED
	      && (prob <= HITRATE (1) || prob >= HITRATE (99))));
}

/* Same predicate as above, working on edges.  */
bool
edge_probability_reliable_p (const_edge e)
{
  return probability_reliable_p (e->probability);
}

/* Same predicate as edge_probability_reliable_p, working on notes.  */
bool
br_prob_note_reliable_p (const_rtx note)
{
  gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
  return probability_reliable_p (XINT (note, 0));
}

static void
predict_insn (rtx insn, enum br_predictor predictor, int probability)
{
  gcc_assert (any_condjump_p (insn));
  if (!flag_guess_branch_prob)
    return;

  add_reg_note (insn, REG_BR_PRED,
		gen_rtx_CONCAT (VOIDmode,
				GEN_INT ((int) predictor),
				GEN_INT ((int) probability)));
}

/* Predict insn by given predictor.  */

void
predict_insn_def (rtx insn, enum br_predictor predictor,
		  enum prediction taken)
{
   int probability = predictor_info[(int) predictor].hitrate;

   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;

   predict_insn (insn, predictor, probability);
}

/* Predict edge E with given probability if possible.  */

void
rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
{
  rtx last_insn;
  last_insn = BB_END (e->src);

  /* We can store the branch prediction information only about
     conditional jumps.  */
  if (!any_condjump_p (last_insn))
    return;

  /* We always store probability of branching.  */
  if (e->flags & EDGE_FALLTHRU)
    probability = REG_BR_PROB_BASE - probability;

  predict_insn (last_insn, predictor, probability);
}

/* Predict edge E with the given PROBABILITY.  */
void
gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
{
  gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
  if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
       1)
      && flag_guess_branch_prob && optimize)
    {
      struct edge_prediction *i = XNEW (struct edge_prediction);
      void **preds = pointer_map_insert (bb_predictions, e->src);

      i->ep_next = (struct edge_prediction *) *preds;
      *preds = i;
      i->ep_probability = probability;
      i->ep_predictor = predictor;
      i->ep_edge = e;
    }
}

/* Remove all predictions on given basic block that are attached
   to edge E.  */
void
remove_predictions_associated_with_edge (edge e)
{
  void **preds;

  if (!bb_predictions)
    return;

  preds = pointer_map_contains (bb_predictions, e->src);

  if (preds)
    {
      struct edge_prediction **prediction = (struct edge_prediction **) preds;
      struct edge_prediction *next;

      while (*prediction)
	{
	  if ((*prediction)->ep_edge == e)
	    {
	      next = (*prediction)->ep_next;
	      free (*prediction);
	      *prediction = next;
	    }
	  else
	    prediction = &((*prediction)->ep_next);
	}
    }
}

/* Clears the list of predictions stored for BB.  */

static void
clear_bb_predictions (basic_block bb)
{
  void **preds = pointer_map_contains (bb_predictions, bb);
  struct edge_prediction *pred, *next;

  if (!preds)
    return;

  for (pred = (struct edge_prediction *) *preds; pred; pred = next)
    {
      next = pred->ep_next;
      free (pred);
    }
  *preds = NULL;
}

/* Return true when we can store prediction on insn INSN.
   At the moment we represent predictions only on conditional
   jumps, not at computed jump or other complicated cases.  */
static bool
can_predict_insn_p (const_rtx insn)
{
  return (JUMP_P (insn)
	  && any_condjump_p (insn)
	  && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
}

/* Predict edge E by given predictor if possible.  */

void
predict_edge_def (edge e, enum br_predictor predictor,
		  enum prediction taken)
{
   int probability = predictor_info[(int) predictor].hitrate;

   if (taken != TAKEN)
     probability = REG_BR_PROB_BASE - probability;

   predict_edge (e, predictor, probability);
}

/* Invert all branch predictions or probability notes in the INSN.  This needs
   to be done each time we invert the condition used by the jump.  */

void
invert_br_probabilities (rtx insn)
{
  rtx note;

  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PROB)
      XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
    else if (REG_NOTE_KIND (note) == REG_BR_PRED)
      XEXP (XEXP (note, 0), 1)
	= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
}

/* Dump information about the branch prediction to the output file.  */

static void
dump_prediction (FILE *file, enum br_predictor predictor, int probability,
		 basic_block bb, int used)
{
  edge e;
  edge_iterator ei;

  if (!file)
    return;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (! (e->flags & EDGE_FALLTHRU))
      break;

  fprintf (file, "  %s heuristics%s: %.1f%%",
	   predictor_info[predictor].name,
	   used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);

  if (bb->count)
    {
      fprintf (file, "  exec ");
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      if (e)
	{
	  fprintf (file, " hit ");
	  fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
	  fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
	}
    }

  fprintf (file, "\n");
}

/* We can not predict the probabilities of outgoing edges of bb.  Set them
   evenly and hope for the best.  */
static void
set_even_probabilities (basic_block bb)
{
  int nedges = 0;
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
      nedges ++;
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
      e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
    else
      e->probability = 0;
}

/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
   note if not already present.  Remove now useless REG_BR_PRED notes.  */

static void
combine_predictions_for_insn (rtx insn, basic_block bb)
{
  rtx prob_note;
  rtx *pnote;
  rtx note;
  int best_probability = PROB_EVEN;
  enum br_predictor best_predictor = END_PREDICTORS;
  int combined_probability = REG_BR_PROB_BASE / 2;
  int d;
  bool first_match = false;
  bool found = false;

  if (!can_predict_insn_p (insn))
    {
      set_even_probabilities (bb);
      return;
    }

  prob_note = find_reg_note (insn, REG_BR_PROB, 0);
  pnote = &REG_NOTES (insn);
  if (dump_file)
    fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
	     bb->index);

  /* We implement "first match" heuristics and use probability guessed
     by predictor with smallest index.  */
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_BR_PRED)
      {
	enum br_predictor predictor = ((enum br_predictor)
				       INTVAL (XEXP (XEXP (note, 0), 0)));
	int probability = INTVAL (XEXP (XEXP (note, 0), 1));

	found = true;
	if (best_predictor > predictor)
	  best_probability = probability, best_predictor = predictor;

	d = (combined_probability * probability
	     + (REG_BR_PROB_BASE - combined_probability)
	     * (REG_BR_PROB_BASE - probability));

	/* Use FP math to avoid overflows of 32bit integers.  */
	if (d == 0)
	  /* If one probability is 0% and one 100%, avoid division by zero.  */
	  combined_probability = REG_BR_PROB_BASE / 2;
	else
	  combined_probability = (((double) combined_probability) * probability
				  * REG_BR_PROB_BASE / d + 0.5);
      }

  /* Decide which heuristic to use.  In case we didn't match anything,
     use no_prediction heuristic, in case we did match, use either
     first match or Dempster-Shaffer theory depending on the flags.  */

  if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
    first_match = true;

  if (!found)
    dump_prediction (dump_file, PRED_NO_PREDICTION,
		     combined_probability, bb, true);
  else
    {
      dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
		       bb, !first_match);
      dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
		       bb, first_match);
    }

  if (first_match)
    combined_probability = best_probability;
  dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);

  while (*pnote)
    {
      if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
	{
	  enum br_predictor predictor = ((enum br_predictor)
					 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));

	  dump_prediction (dump_file, predictor, probability, bb,
			   !first_match || best_predictor == predictor);
	  *pnote = XEXP (*pnote, 1);
	}
      else
	pnote = &XEXP (*pnote, 1);
    }

  if (!prob_note)
    {
      add_int_reg_note (insn, REG_BR_PROB, combined_probability);

      /* Save the prediction into CFG in case we are seeing non-degenerated
	 conditional jump.  */
      if (!single_succ_p (bb))
	{
	  BRANCH_EDGE (bb)->probability = combined_probability;
	  FALLTHRU_EDGE (bb)->probability
	    = REG_BR_PROB_BASE - combined_probability;
	}
    }
  else if (!single_succ_p (bb))
    {
      int prob = XINT (prob_note, 0);

      BRANCH_EDGE (bb)->probability = prob;
      FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
    }
  else
    single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
}

/* Combine predictions into single probability and store them into CFG.
   Remove now useless prediction entries.  */

static void
combine_predictions_for_bb (basic_block bb)
{
  int best_probability = PROB_EVEN;
  enum br_predictor best_predictor = END_PREDICTORS;
  int combined_probability = REG_BR_PROB_BASE / 2;
  int d;
  bool first_match = false;
  bool found = false;
  struct edge_prediction *pred;
  int nedges = 0;
  edge e, first = NULL, second = NULL;
  edge_iterator ei;
  void **preds;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
      {
	nedges ++;
	if (first && !second)
	  second = e;
	if (!first)
	  first = e;
      }

  /* When there is no successor or only one choice, prediction is easy.

     We are lazy for now and predict only basic blocks with two outgoing
     edges.  It is possible to predict generic case too, but we have to
     ignore first match heuristics and do more involved combining.  Implement
     this later.  */
  if (nedges != 2)
    {
      if (!bb->count)
	set_even_probabilities (bb);
      clear_bb_predictions (bb);
      if (dump_file)
	fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
		 nedges, bb->index);
      return;
    }

  if (dump_file)
    fprintf (dump_file, "Predictions for bb %i\n", bb->index);

  preds = pointer_map_contains (bb_predictions, bb);
  if (preds)
    {
      /* We implement "first match" heuristics and use probability guessed
	 by predictor with smallest index.  */
      for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
	{
	  enum br_predictor predictor = pred->ep_predictor;
	  int probability = pred->ep_probability;

	  if (pred->ep_edge != first)
	    probability = REG_BR_PROB_BASE - probability;

	  found = true;
	  /* First match heuristics would be widly confused if we predicted
	     both directions.  */
	  if (best_predictor > predictor)
	    {
              struct edge_prediction *pred2;
	      int prob = probability;

	      for (pred2 = (struct edge_prediction *) *preds;
		   pred2; pred2 = pred2->ep_next)
	       if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
	         {
	           int probability2 = pred->ep_probability;

		   if (pred2->ep_edge != first)
		     probability2 = REG_BR_PROB_BASE - probability2;

		   if ((probability < REG_BR_PROB_BASE / 2) !=
		       (probability2 < REG_BR_PROB_BASE / 2))
		     break;

		   /* If the same predictor later gave better result, go for it! */
		   if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
		       || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
		     prob = probability2;
		 }
	      if (!pred2)
	        best_probability = prob, best_predictor = predictor;
	    }

	  d = (combined_probability * probability
	       + (REG_BR_PROB_BASE - combined_probability)
	       * (REG_BR_PROB_BASE - probability));

	  /* Use FP math to avoid overflows of 32bit integers.  */
	  if (d == 0)
	    /* If one probability is 0% and one 100%, avoid division by zero.  */
	    combined_probability = REG_BR_PROB_BASE / 2;
	  else
	    combined_probability = (((double) combined_probability)
				    * probability
		    		    * REG_BR_PROB_BASE / d + 0.5);
	}
    }

  /* Decide which heuristic to use.  In case we didn't match anything,
     use no_prediction heuristic, in case we did match, use either
     first match or Dempster-Shaffer theory depending on the flags.  */

  if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
    first_match = true;

  if (!found)
    dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
  else
    {
      dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
		       !first_match);
      dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
		       first_match);
    }

  if (first_match)
    combined_probability = best_probability;
  dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);

  if (preds)
    {
      for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
	{
	  enum br_predictor predictor = pred->ep_predictor;
	  int probability = pred->ep_probability;

	  if (pred->ep_edge != EDGE_SUCC (bb, 0))
	    probability = REG_BR_PROB_BASE - probability;
	  dump_prediction (dump_file, predictor, probability, bb,
			   !first_match || best_predictor == predictor);
	}
    }
  clear_bb_predictions (bb);

  if (!bb->count)
    {
      first->probability = combined_probability;
      second->probability = REG_BR_PROB_BASE - combined_probability;
    }
}

/* Check if T1 and T2 satisfy the IV_COMPARE condition.
   Return the SSA_NAME if the condition satisfies, NULL otherwise.

   T1 and T2 should be one of the following cases:
     1. T1 is SSA_NAME, T2 is NULL
     2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
     3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4]  */

static tree
strips_small_constant (tree t1, tree t2)
{
  tree ret = NULL;
  int value = 0;

  if (!t1)
    return NULL;
  else if (TREE_CODE (t1) == SSA_NAME)
    ret = t1;
  else if (tree_fits_shwi_p (t1))
    value = tree_to_shwi (t1);
  else
    return NULL;

  if (!t2)
    return ret;
  else if (tree_fits_shwi_p (t2))
    value = tree_to_shwi (t2);
  else if (TREE_CODE (t2) == SSA_NAME)
    {
      if (ret)
        return NULL;
      else
        ret = t2;
    }

  if (value <= 4 && value >= -4)
    return ret;
  else
    return NULL;
}

/* Return the SSA_NAME in T or T's operands.
   Return NULL if SSA_NAME cannot be found.  */

static tree
get_base_value (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    return t;

  if (!BINARY_CLASS_P (t))
    return NULL;

  switch (TREE_OPERAND_LENGTH (t))
    {
    case 1:
      return strips_small_constant (TREE_OPERAND (t, 0), NULL);
    case 2:
      return strips_small_constant (TREE_OPERAND (t, 0),
				    TREE_OPERAND (t, 1));
    default:
      return NULL;
    }
}

/* Check the compare STMT in LOOP. If it compares an induction
   variable to a loop invariant, return true, and save
   LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
   Otherwise return false and set LOOP_INVAIANT to NULL.  */

static bool
is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
				     tree *loop_invariant,
				     enum tree_code *compare_code,
				     tree *loop_step,
				     tree *loop_iv_base)
{
  tree op0, op1, bound, base;
  affine_iv iv0, iv1;
  enum tree_code code;
  tree step;

  code = gimple_cond_code (stmt);
  *loop_invariant = NULL;

  switch (code)
    {
    case GT_EXPR:
    case GE_EXPR:
    case NE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case EQ_EXPR:
      break;

    default:
      return false;
    }

  op0 = gimple_cond_lhs (stmt);
  op1 = gimple_cond_rhs (stmt);

  if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST) 
       || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
    return false;
  if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
    return false;
  if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
    return false;
  if (TREE_CODE (iv0.step) != INTEGER_CST
      || TREE_CODE (iv1.step) != INTEGER_CST)
    return false;
  if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
      || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
    return false;

  if (integer_zerop (iv0.step))
    {
      if (code != NE_EXPR && code != EQ_EXPR)
	code = invert_tree_comparison (code, false);
      bound = iv0.base;
      base = iv1.base;
      if (tree_fits_shwi_p (iv1.step))
	step = iv1.step;
      else
	return false;
    }
  else
    {
      bound = iv1.base;
      base = iv0.base;
      if (tree_fits_shwi_p (iv0.step))
	step = iv0.step;
      else
	return false;
    }

  if (TREE_CODE (bound) != INTEGER_CST)
    bound = get_base_value (bound);
  if (!bound)
    return false;
  if (TREE_CODE (base) != INTEGER_CST)
    base = get_base_value (base);
  if (!base)
    return false;

  *loop_invariant = bound;
  *compare_code = code;
  *loop_step = step;
  *loop_iv_base = base;
  return true;
}

/* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent.  */

static bool
expr_coherent_p (tree t1, tree t2)
{
  gimple stmt;
  tree ssa_name_1 = NULL;
  tree ssa_name_2 = NULL;

  gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
  gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);

  if (t1 == t2)
    return true;

  if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
    return true;
  if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
    return false;

  /* Check to see if t1 is expressed/defined with t2.  */
  stmt = SSA_NAME_DEF_STMT (t1);
  gcc_assert (stmt != NULL);
  if (is_gimple_assign (stmt))
    {
      ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
      if (ssa_name_1 && ssa_name_1 == t2)
	return true;
    }

  /* Check to see if t2 is expressed/defined with t1.  */
  stmt = SSA_NAME_DEF_STMT (t2);
  gcc_assert (stmt != NULL);
  if (is_gimple_assign (stmt))
    {
      ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
      if (ssa_name_2 && ssa_name_2 == t1)
	return true;
    }

  /* Compare if t1 and t2's def_stmts are identical.  */
  if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
    return true;
  else
    return false;
}

/* Predict branch probability of BB when BB contains a branch that compares
   an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
   loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.

   E.g.
     for (int i = 0; i < bound; i++) {
       if (i < bound - 2)
	 computation_1();
       else
	 computation_2();
     }

  In this loop, we will predict the branch inside the loop to be taken.  */

static void
predict_iv_comparison (struct loop *loop, basic_block bb,
		       tree loop_bound_var,
		       tree loop_iv_base_var,
		       enum tree_code loop_bound_code,
		       int loop_bound_step)
{
  gimple stmt;
  tree compare_var, compare_base;
  enum tree_code compare_code;
  tree compare_step_var;
  edge then_edge;
  edge_iterator ei;

  if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
      || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
      || predicted_by_p (bb, PRED_LOOP_EXIT))
    return;

  stmt = last_stmt (bb);
  if (!stmt || gimple_code (stmt) != GIMPLE_COND)
    return;
  if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
					    &compare_code,
					    &compare_step_var,
					    &compare_base))
    return;

  /* Find the taken edge.  */
  FOR_EACH_EDGE (then_edge, ei, bb->succs)
    if (then_edge->flags & EDGE_TRUE_VALUE)
      break;

  /* When comparing an IV to a loop invariant, NE is more likely to be
     taken while EQ is more likely to be not-taken.  */
  if (compare_code == NE_EXPR)
    {
      predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      return;
    }
  else if (compare_code == EQ_EXPR)
    {
      predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
      return;
    }

  if (!expr_coherent_p (loop_iv_base_var, compare_base))
    return;

  /* If loop bound, base and compare bound are all constants, we can
     calculate the probability directly.  */
  if (tree_fits_shwi_p (loop_bound_var)
      && tree_fits_shwi_p (compare_var)
      && tree_fits_shwi_p (compare_base))
    {
      int probability;
      bool overflow, overall_overflow = false;
      widest_int compare_count, tem;

      /* (loop_bound - base) / compare_step */
      tem = wi::sub (wi::to_widest (loop_bound_var),
		     wi::to_widest (compare_base), SIGNED, &overflow);
      overall_overflow |= overflow;
      widest_int loop_count = wi::div_trunc (tem,
					     wi::to_widest (compare_step_var),
					     SIGNED, &overflow);
      overall_overflow |= overflow;

      if (!wi::neg_p (wi::to_widest (compare_step_var))
          ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
	{
	  /* (loop_bound - compare_bound) / compare_step */
	  tem = wi::sub (wi::to_widest (loop_bound_var),
			 wi::to_widest (compare_var), SIGNED, &overflow);
	  overall_overflow |= overflow;
	  compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
					 SIGNED, &overflow);
	  overall_overflow |= overflow;
	}
      else
        {
	  /* (compare_bound - base) / compare_step */
	  tem = wi::sub (wi::to_widest (compare_var),
			 wi::to_widest (compare_base), SIGNED, &overflow);
	  overall_overflow |= overflow;
          compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
					 SIGNED, &overflow);
	  overall_overflow |= overflow;
	}
      if (compare_code == LE_EXPR || compare_code == GE_EXPR)
	++compare_count;
      if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
	++loop_count;
      if (wi::neg_p (compare_count))
        compare_count = 0;
      if (wi::neg_p (loop_count))
        loop_count = 0;
      if (loop_count == 0)
	probability = 0;
      else if (wi::cmps (compare_count, loop_count) == 1)
	probability = REG_BR_PROB_BASE;
      else
        {
	  tem = compare_count * REG_BR_PROB_BASE;
	  tem = wi::udiv_trunc (tem, loop_count);
	  probability = tem.to_uhwi ();
	}

      if (!overall_overflow)
        predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);

      return;
    }

  if (expr_coherent_p (loop_bound_var, compare_var))
    {
      if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
	  && (compare_code == LT_EXPR || compare_code == LE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
	       && (compare_code == GT_EXPR || compare_code == GE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if (loop_bound_code == NE_EXPR)
	{
	  /* If the loop backedge condition is "(i != bound)", we do
	     the comparison based on the step of IV:
	     * step < 0 : backedge condition is like (i > bound)
	     * step > 0 : backedge condition is like (i < bound)  */
	  gcc_assert (loop_bound_step != 0);
	  if (loop_bound_step > 0
	      && (compare_code == LT_EXPR
		  || compare_code == LE_EXPR))
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
	  else if (loop_bound_step < 0
		   && (compare_code == GT_EXPR
		       || compare_code == GE_EXPR))
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
	  else
	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
	}
      else
	/* The branch is predicted not-taken if loop_bound_code is
	   opposite with compare_code.  */
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
    }
  else if (expr_coherent_p (loop_iv_base_var, compare_var))
    {
      /* For cases like:
	   for (i = s; i < h; i++)
	     if (i > s + 2) ....
	 The branch should be predicted taken.  */
      if (loop_bound_step > 0
	  && (compare_code == GT_EXPR || compare_code == GE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else if (loop_bound_step < 0
	       && (compare_code == LT_EXPR || compare_code == LE_EXPR))
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
      else
	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
    }
}

/* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
   exits are resulted from short-circuit conditions that will generate an
   if_tmp. E.g.:

   if (foo() || global > 10)
     break;

   This will be translated into:

   BB3:
     loop header...
   BB4:
     if foo() goto BB6 else goto BB5
   BB5:
     if global > 10 goto BB6 else goto BB7
   BB6:
     goto BB7
   BB7:
     iftmp = (PHI 0(BB5), 1(BB6))
     if iftmp == 1 goto BB8 else goto BB3
   BB8:
     outside of the loop...

   The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
   From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
   exits. This function takes BB7->BB8 as input, and finds out the extra loop
   exits to predict them using PRED_LOOP_EXIT.  */

static void
predict_extra_loop_exits (edge exit_edge)
{
  unsigned i;
  bool check_value_one;
  gimple phi_stmt;
  tree cmp_rhs, cmp_lhs;
  gimple cmp_stmt = last_stmt (exit_edge->src);

  if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
    return;
  cmp_rhs = gimple_cond_rhs (cmp_stmt);
  cmp_lhs = gimple_cond_lhs (cmp_stmt);
  if (!TREE_CONSTANT (cmp_rhs)
      || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
    return;
  if (TREE_CODE (cmp_lhs) != SSA_NAME)
    return;

  /* If check_value_one is true, only the phi_args with value '1' will lead
     to loop exit. Otherwise, only the phi_args with value '0' will lead to
     loop exit.  */
  check_value_one = (((integer_onep (cmp_rhs))
		    ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
		    ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));

  phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
  if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
    return;

  for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
    {
      edge e1;
      edge_iterator ei;
      tree val = gimple_phi_arg_def (phi_stmt, i);
      edge e = gimple_phi_arg_edge (phi_stmt, i);

      if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
	continue;
      if ((check_value_one ^ integer_onep (val)) == 1)
	continue;
      if (EDGE_COUNT (e->src->succs) != 1)
	{
	  predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
	  continue;
	}

      FOR_EACH_EDGE (e1, ei, e->src->preds)
	predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
    }
}

/* Predict edge probabilities by exploiting loop structure.  */

static void
predict_loops (void)
{
  struct loop *loop;

  /* Try to predict out blocks in a loop that are not part of a
     natural loop.  */
  FOR_EACH_LOOP (loop, 0)
    {
      basic_block bb, *bbs;
      unsigned j, n_exits;
      vec<edge> exits;
      struct tree_niter_desc niter_desc;
      edge ex;
      struct nb_iter_bound *nb_iter;
      enum tree_code loop_bound_code = ERROR_MARK;
      tree loop_bound_step = NULL;
      tree loop_bound_var = NULL;
      tree loop_iv_base = NULL;
      gimple stmt = NULL;

      exits = get_loop_exit_edges (loop);
      n_exits = exits.length ();
      if (!n_exits)
	{
          exits.release ();
	  continue;
	}

      FOR_EACH_VEC_ELT (exits, j, ex)
	{
	  tree niter = NULL;
	  HOST_WIDE_INT nitercst;
	  int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
	  int probability;
	  enum br_predictor predictor;

	  predict_extra_loop_exits (ex);

	  if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
	    niter = niter_desc.niter;
	  if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
	    niter = loop_niter_by_eval (loop, ex);

	  if (TREE_CODE (niter) == INTEGER_CST)
	    {
	      if (tree_fits_uhwi_p (niter)
		  && max
		  && compare_tree_int (niter, max - 1) == -1)
		nitercst = tree_to_uhwi (niter) + 1;
	      else
		nitercst = max;
	      predictor = PRED_LOOP_ITERATIONS;
	    }
	  /* If we have just one exit and we can derive some information about
	     the number of iterations of the loop from the statements inside
	     the loop, use it to predict this exit.  */
	  else if (n_exits == 1)
	    {
	      nitercst = estimated_stmt_executions_int (loop);
	      if (nitercst < 0)
		continue;
	      if (nitercst > max)
		nitercst = max;

	      predictor = PRED_LOOP_ITERATIONS_GUESSED;
	    }
	  else
	    continue;

	  /* If the prediction for number of iterations is zero, do not
	     predict the exit edges.  */
	  if (nitercst == 0)
	    continue;

	  probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
	  predict_edge (ex, predictor, probability);
	}
      exits.release ();

      /* Find information about loop bound variables.  */
      for (nb_iter = loop->bounds; nb_iter;
	   nb_iter = nb_iter->next)
	if (nb_iter->stmt
	    && gimple_code (nb_iter->stmt) == GIMPLE_COND)
	  {
	    stmt = nb_iter->stmt;
	    break;
	  }
      if (!stmt && last_stmt (loop->header)
	  && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
	stmt = last_stmt (loop->header);
      if (stmt)
	is_comparison_with_loop_invariant_p (stmt, loop,
					     &loop_bound_var,
					     &loop_bound_code,
					     &loop_bound_step,
					     &loop_iv_base);

      bbs = get_loop_body (loop);

      for (j = 0; j < loop->num_nodes; j++)
	{
	  int header_found = 0;
	  edge e;
	  edge_iterator ei;

	  bb = bbs[j];

	  /* Bypass loop heuristics on continue statement.  These
	     statements construct loops via "non-loop" constructs
	     in the source language and are better to be handled
	     separately.  */
	  if (predicted_by_p (bb, PRED_CONTINUE))
	    continue;

	  /* Loop branch heuristics - predict an edge back to a
	     loop's head as taken.  */
	  if (bb == loop->latch)
	    {
	      e = find_edge (loop->latch, loop->header);
	      if (e)
		{
		  header_found = 1;
		  predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
		}
	    }

	  /* Loop exit heuristics - predict an edge exiting the loop if the
	     conditional has no loop header successors as not taken.  */
	  if (!header_found
	      /* If we already used more reliable loop exit predictors, do not
		 bother with PRED_LOOP_EXIT.  */
	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
	    {
	      /* For loop with many exits we don't want to predict all exits
	         with the pretty large probability, because if all exits are
		 considered in row, the loop would be predicted to iterate
		 almost never.  The code to divide probability by number of
		 exits is very rough.  It should compute the number of exits
		 taken in each patch through function (not the overall number
		 of exits that might be a lot higher for loops with wide switch
		 statements in them) and compute n-th square root.

		 We limit the minimal probability by 2% to avoid
		 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
		 as this was causing regression in perl benchmark containing such
		 a wide loop.  */

	      int probability = ((REG_BR_PROB_BASE
		                  - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
				 / n_exits);
	      if (probability < HITRATE (2))
		probability = HITRATE (2);
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (e->dest->index < NUM_FIXED_BLOCKS
		    || !flow_bb_inside_loop_p (loop, e->dest))
		  predict_edge (e, PRED_LOOP_EXIT, probability);
	    }
	  if (loop_bound_var)
	    predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
				   loop_bound_code,
				   tree_to_shwi (loop_bound_step));
	}

      /* Free basic blocks from get_loop_body.  */
      free (bbs);
    }
}

/* Attempt to predict probabilities of BB outgoing edges using local
   properties.  */
static void
bb_estimate_probability_locally (basic_block bb)
{
  rtx last_insn = BB_END (bb);
  rtx cond;

  if (! can_predict_insn_p (last_insn))
    return;
  cond = get_condition (last_insn, NULL, false, false);
  if (! cond)
    return;

  /* Try "pointer heuristic."
     A comparison ptr == 0 is predicted as false.
     Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
  if (COMPARISON_P (cond)
      && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
	  || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
    {
      if (GET_CODE (cond) == EQ)
	predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
      else if (GET_CODE (cond) == NE)
	predict_insn_def (last_insn, PRED_POINTER, TAKEN);
    }
  else

  /* Try "opcode heuristic."
     EQ tests are usually false and NE tests are usually true. Also,
     most quantities are positive, so we can make the appropriate guesses
     about signed comparisons against zero.  */
    switch (GET_CODE (cond))
      {
      case CONST_INT:
	/* Unconditional branch.  */
	predict_insn_def (last_insn, PRED_UNCONDITIONAL,
			  cond == const0_rtx ? NOT_TAKEN : TAKEN);
	break;

      case EQ:
      case UNEQ:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (XEXP (cond, 1) == const0_rtx
		 || XEXP (cond, 0) == const0_rtx)
	  ;
	else
	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
	break;

      case NE:
      case LTGT:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (XEXP (cond, 1) == const0_rtx
		 || XEXP (cond, 0) == const0_rtx)
	  ;
	else
	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
	break;

      case ORDERED:
	predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
	break;

      case UNORDERED:
	predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
	break;

      case LE:
      case LT:
	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
	    || XEXP (cond, 1) == constm1_rtx)
	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
	break;

      case GE:
      case GT:
	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
	    || XEXP (cond, 1) == constm1_rtx)
	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
	break;

      default:
	break;
      }
}

/* Set edge->probability for each successor edge of BB.  */
void
guess_outgoing_edge_probabilities (basic_block bb)
{
  bb_estimate_probability_locally (bb);
  combine_predictions_for_insn (BB_END (bb), bb);
}

static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);

/* Helper function for expr_expected_value.  */

static tree
expr_expected_value_1 (tree type, tree op0, enum tree_code code,
		       tree op1, bitmap visited, enum br_predictor *predictor)
{
  gimple def;

  if (predictor)
    *predictor = PRED_UNCONDITIONAL;

  if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
    {
      if (TREE_CONSTANT (op0))
	return op0;

      if (code != SSA_NAME)
	return NULL_TREE;

      def = SSA_NAME_DEF_STMT (op0);

      /* If we were already here, break the infinite cycle.  */
      if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
	return NULL;

      if (gimple_code (def) == GIMPLE_PHI)
	{
	  /* All the arguments of the PHI node must have the same constant
	     length.  */
	  int i, n = gimple_phi_num_args (def);
	  tree val = NULL, new_val;

	  for (i = 0; i < n; i++)
	    {
	      tree arg = PHI_ARG_DEF (def, i);
	      enum br_predictor predictor2;

	      /* If this PHI has itself as an argument, we cannot
		 determine the string length of this argument.  However,
		 if we can find an expected constant value for the other
		 PHI args then we can still be sure that this is
		 likely a constant.  So be optimistic and just
		 continue with the next argument.  */
	      if (arg == PHI_RESULT (def))
		continue;

	      new_val = expr_expected_value (arg, visited, &predictor2);

	      /* It is difficult to combine value predictors.  Simply assume
		 that later predictor is weaker and take its prediction.  */
	      if (predictor && *predictor < predictor2)
		*predictor = predictor2;
	      if (!new_val)
		return NULL;
	      if (!val)
		val = new_val;
	      else if (!operand_equal_p (val, new_val, false))
		return NULL;
	    }
	  return val;
	}
      if (is_gimple_assign (def))
	{
	  if (gimple_assign_lhs (def) != op0)
	    return NULL;

	  return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
					gimple_assign_rhs1 (def),
					gimple_assign_rhs_code (def),
					gimple_assign_rhs2 (def),
					visited, predictor);
	}

      if (is_gimple_call (def))
	{
	  tree decl = gimple_call_fndecl (def);
	  if (!decl)
	    {
	      if (gimple_call_internal_p (def)
		  && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
		{
		  gcc_assert (gimple_call_num_args (def) == 3);
		  tree val = gimple_call_arg (def, 0);
		  if (TREE_CONSTANT (val))
		    return val;
		  if (predictor)
		    {
		      *predictor = PRED_BUILTIN_EXPECT;
		      tree val2 = gimple_call_arg (def, 2);
		      gcc_assert (TREE_CODE (val2) == INTEGER_CST
				  && tree_fits_uhwi_p (val2)
				  && tree_to_uhwi (val2) < END_PREDICTORS);
		      *predictor = (enum br_predictor) tree_to_uhwi (val2);
		    }
		  return gimple_call_arg (def, 1);
		}
	      return NULL;
	    }
	  if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
	    switch (DECL_FUNCTION_CODE (decl))
	      {
	      case BUILT_IN_EXPECT:
		{
		  tree val;
		  if (gimple_call_num_args (def) != 2)
		    return NULL;
		  val = gimple_call_arg (def, 0);
		  if (TREE_CONSTANT (val))
		    return val;
		  if (predictor)
		    *predictor = PRED_BUILTIN_EXPECT;
		  return gimple_call_arg (def, 1);
		}

	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
		/* Assume that any given atomic operation has low contention,
		   and thus the compare-and-swap operation succeeds.  */
		if (predictor)
		  *predictor = PRED_COMPARE_AND_SWAP;
		return boolean_true_node;
	    }
	}

      return NULL;
    }

  if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
    {
      tree res;
      enum br_predictor predictor2;
      op0 = expr_expected_value (op0, visited, predictor);
      if (!op0)
	return NULL;
      op1 = expr_expected_value (op1, visited, &predictor2);
      if (predictor && *predictor < predictor2)
	*predictor = predictor2;
      if (!op1)
	return NULL;
      res = fold_build2 (code, type, op0, op1);
      if (TREE_CONSTANT (res))
	return res;
      return NULL;
    }
  if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
    {
      tree res;
      op0 = expr_expected_value (op0, visited, predictor);
      if (!op0)
	return NULL;
      res = fold_build1 (code, type, op0);
      if (TREE_CONSTANT (res))
	return res;
      return NULL;
    }
  return NULL;
}

/* Return constant EXPR will likely have at execution time, NULL if unknown.
   The function is used by builtin_expect branch predictor so the evidence
   must come from this construct and additional possible constant folding.

   We may want to implement more involved value guess (such as value range
   propagation based prediction), but such tricks shall go to new
   implementation.  */

static tree
expr_expected_value (tree expr, bitmap visited,
		     enum br_predictor *predictor)
{
  enum tree_code code;
  tree op0, op1;

  if (TREE_CONSTANT (expr))
    {
      if (predictor)
	*predictor = PRED_UNCONDITIONAL;
      return expr;
    }

  extract_ops_from_tree (expr, &code, &op0, &op1);
  return expr_expected_value_1 (TREE_TYPE (expr),
				op0, code, op1, visited, predictor);
}

/* Predict using opcode of the last statement in basic block.  */
static void
tree_predict_by_opcode (basic_block bb)
{
  gimple stmt = last_stmt (bb);
  edge then_edge;
  tree op0, op1;
  tree type;
  tree val;
  enum tree_code cmp;
  bitmap visited;
  edge_iterator ei;
  enum br_predictor predictor;

  if (!stmt || gimple_code (stmt) != GIMPLE_COND)
    return;
  FOR_EACH_EDGE (then_edge, ei, bb->succs)
    if (then_edge->flags & EDGE_TRUE_VALUE)
      break;
  op0 = gimple_cond_lhs (stmt);
  op1 = gimple_cond_rhs (stmt);
  cmp = gimple_cond_code (stmt);
  type = TREE_TYPE (op0);
  visited = BITMAP_ALLOC (NULL);
  val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
			       &predictor);
  BITMAP_FREE (visited);
  if (val && TREE_CODE (val) == INTEGER_CST)
    {
      if (predictor == PRED_BUILTIN_EXPECT)
	{
	  int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);

	  gcc_assert (percent >= 0 && percent <= 100);
	  if (integer_zerop (val))
	    percent = 100 - percent;
	  predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
	}
      else
	predict_edge (then_edge, predictor,
		      integer_zerop (val) ? NOT_TAKEN : TAKEN);
    }
  /* Try "pointer heuristic."
     A comparison ptr == 0 is predicted as false.
     Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
  if (POINTER_TYPE_P (type))
    {
      if (cmp == EQ_EXPR)
	predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
      else if (cmp == NE_EXPR)
	predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
    }
  else

  /* Try "opcode heuristic."
     EQ tests are usually false and NE tests are usually true. Also,
     most quantities are positive, so we can make the appropriate guesses
     about signed comparisons against zero.  */
    switch (cmp)
      {
      case EQ_EXPR:
      case UNEQ_EXPR:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_TYPE_P (type))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (integer_zerop (op0) || integer_zerop (op1))
	  ;
	else
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
	break;

      case NE_EXPR:
      case LTGT_EXPR:
	/* Floating point comparisons appears to behave in a very
	   unpredictable way because of special role of = tests in
	   FP code.  */
	if (FLOAT_TYPE_P (type))
	  ;
	/* Comparisons with 0 are often used for booleans and there is
	   nothing useful to predict about them.  */
	else if (integer_zerop (op0)
		 || integer_zerop (op1))
	  ;
	else
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
	break;

      case ORDERED_EXPR:
	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
	break;

      case UNORDERED_EXPR:
	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
	break;

      case LE_EXPR:
      case LT_EXPR:
	if (integer_zerop (op1)
	    || integer_onep (op1)
	    || integer_all_onesp (op1)
	    || real_zerop (op1)
	    || real_onep (op1)
	    || real_minus_onep (op1))
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
	break;

      case GE_EXPR:
      case GT_EXPR:
	if (integer_zerop (op1)
	    || integer_onep (op1)
	    || integer_all_onesp (op1)
	    || real_zerop (op1)
	    || real_onep (op1)
	    || real_minus_onep (op1))
	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
	break;

      default:
	break;
      }
}

/* Try to guess whether the value of return means error code.  */

static enum br_predictor
return_prediction (tree val, enum prediction *prediction)
{
  /* VOID.  */
  if (!val)
    return PRED_NO_PREDICTION;
  /* Different heuristics for pointers and scalars.  */
  if (POINTER_TYPE_P (TREE_TYPE (val)))
    {
      /* NULL is usually not returned.  */
      if (integer_zerop (val))
	{
	  *prediction = NOT_TAKEN;
	  return PRED_NULL_RETURN;
	}
    }
  else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
    {
      /* Negative return values are often used to indicate
         errors.  */
      if (TREE_CODE (val) == INTEGER_CST
	  && tree_int_cst_sgn (val) < 0)
	{
	  *prediction = NOT_TAKEN;
	  return PRED_NEGATIVE_RETURN;
	}
      /* Constant return values seems to be commonly taken.
         Zero/one often represent booleans so exclude them from the
	 heuristics.  */
      if (TREE_CONSTANT (val)
	  && (!integer_zerop (val) && !integer_onep (val)))
	{
	  *prediction = TAKEN;
	  return PRED_CONST_RETURN;
	}
    }
  return PRED_NO_PREDICTION;
}

/* Find the basic block with return expression and look up for possible
   return value trying to apply RETURN_PREDICTION heuristics.  */
static void
apply_return_prediction (void)
{
  gimple return_stmt = NULL;
  tree return_val;
  edge e;
  gimple phi;
  int phi_num_args, i;
  enum br_predictor pred;
  enum prediction direction;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    {
      return_stmt = last_stmt (e->src);
      if (return_stmt
	  && gimple_code (return_stmt) == GIMPLE_RETURN)
	break;
    }
  if (!e)
    return;
  return_val = gimple_return_retval (return_stmt);
  if (!return_val)
    return;
  if (TREE_CODE (return_val) != SSA_NAME
      || !SSA_NAME_DEF_STMT (return_val)
      || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
    return;
  phi = SSA_NAME_DEF_STMT (return_val);
  phi_num_args = gimple_phi_num_args (phi);
  pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);

  /* Avoid the degenerate case where all return values form the function
     belongs to same category (ie they are all positive constants)
     so we can hardly say something about them.  */
  for (i = 1; i < phi_num_args; i++)
    if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
      break;
  if (i != phi_num_args)
    for (i = 0; i < phi_num_args; i++)
      {
	pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
	if (pred != PRED_NO_PREDICTION)
	  predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
				         direction);
      }
}

/* Look for basic block that contains unlikely to happen events
   (such as noreturn calls) and mark all paths leading to execution
   of this basic blocks as unlikely.  */

static void
tree_bb_level_predictions (void)
{
  basic_block bb;
  bool has_return_edges = false;
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
      {
        has_return_edges = true;
	break;
      }

  apply_return_prediction ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple stmt = gsi_stmt (gsi);
	  tree decl;

	  if (is_gimple_call (stmt))
	    {
	      if ((gimple_call_flags (stmt) & ECF_NORETURN)
	          && has_return_edges)
		predict_paths_leading_to (bb, PRED_NORETURN,
					  NOT_TAKEN);
	      decl = gimple_call_fndecl (stmt);
	      if (decl
		  && lookup_attribute ("cold",
				       DECL_ATTRIBUTES (decl)))
		predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
					  NOT_TAKEN);
	    }
	  else if (gimple_code (stmt) == GIMPLE_PREDICT)
	    {
	      predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
					gimple_predict_outcome (stmt));
	      /* Keep GIMPLE_PREDICT around so early inlining will propagate
	         hints to callers.  */
	    }
	}
    }
}

#ifdef ENABLE_CHECKING

/* Callback for pointer_map_traverse, asserts that the pointer map is
   empty.  */

static bool
assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
		 void *data ATTRIBUTE_UNUSED)
{
  gcc_assert (!*value);
  return false;
}
#endif

/* Predict branch probabilities and estimate profile for basic block BB.  */

static void
tree_estimate_probability_bb (basic_block bb)
{
  edge e;
  edge_iterator ei;
  gimple last;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      /* Predict edges to user labels with attributes.  */
      if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
	{
	  gimple_stmt_iterator gi;
	  for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
	    {
	      gimple stmt = gsi_stmt (gi);
	      tree decl;

	      if (gimple_code (stmt) != GIMPLE_LABEL)
		break;
	      decl = gimple_label_label (stmt);
	      if (DECL_ARTIFICIAL (decl))
		continue;

	      /* Finally, we have a user-defined label.  */
	      if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
		predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
	      else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
		predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
	    }
	}

      /* Predict early returns to be probable, as we've already taken
	 care for error returns and other cases are often used for
	 fast paths through function.

	 Since we've already removed the return statements, we are
	 looking for CFG like:

	 if (conditional)
	 {
	 ..
	 goto return_block
	 }
	 some other blocks
	 return_block:
	 return_stmt.  */
      if (e->dest != bb->next_bb
	  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	  && single_succ_p (e->dest)
	  && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
	  && (last = last_stmt (e->dest)) != NULL
	  && gimple_code (last) == GIMPLE_RETURN)
	{
	  edge e1;
	  edge_iterator ei1;

	  if (single_succ_p (bb))
	    {
	      FOR_EACH_EDGE (e1, ei1, bb->preds)
		if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
		    && !predicted_by_p (e1->src, PRED_CONST_RETURN)
		    && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
		  predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
	    }
	  else
	    if (!predicted_by_p (e->src, PRED_NULL_RETURN)
		&& !predicted_by_p (e->src, PRED_CONST_RETURN)
		&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
	      predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
	}

      /* Look for block we are guarding (ie we dominate it,
	 but it doesn't postdominate us).  */
      if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
	  && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
	  && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
	{
	  gimple_stmt_iterator bi;

	  /* The call heuristic claims that a guarded function call
	     is improbable.  This is because such calls are often used
	     to signal exceptional situations such as printing error
	     messages.  */
	  for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
	       gsi_next (&bi))
	    {
	      gimple stmt = gsi_stmt (bi);
	      if (is_gimple_call (stmt)
		  /* Constant and pure calls are hardly used to signalize
		     something exceptional.  */
		  && gimple_has_side_effects (stmt))
		{
		  predict_edge_def (e, PRED_CALL, NOT_TAKEN);
		  break;
		}
	    }
	}
    }
  tree_predict_by_opcode (bb);
}

/* Predict branch probabilities and estimate profile of the tree CFG.
   This function can be called from the loop optimizers to recompute
   the profile information.  */

void
tree_estimate_probability (void)
{
  basic_block bb;

  add_noreturn_fake_exit_edges ();
  connect_infinite_loops_to_exit ();
  /* We use loop_niter_by_eval, which requires that the loops have
     preheaders.  */
  create_preheaders (CP_SIMPLE_PREHEADERS);
  calculate_dominance_info (CDI_POST_DOMINATORS);

  bb_predictions = pointer_map_create ();
  tree_bb_level_predictions ();
  record_loop_exits ();

  if (number_of_loops (cfun) > 1)
    predict_loops ();

  FOR_EACH_BB_FN (bb, cfun)
    tree_estimate_probability_bb (bb);

  FOR_EACH_BB_FN (bb, cfun)
    combine_predictions_for_bb (bb);

#ifdef ENABLE_CHECKING
  pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
#endif
  pointer_map_destroy (bb_predictions);
  bb_predictions = NULL;

  estimate_bb_frequencies (false);
  free_dominance_info (CDI_POST_DOMINATORS);
  remove_fake_exit_edges ();
}

/* Predict edges to successors of CUR whose sources are not postdominated by
   BB by PRED and recurse to all postdominators.  */

static void
predict_paths_for_bb (basic_block cur, basic_block bb,
		      enum br_predictor pred,
		      enum prediction taken,
		      bitmap visited)
{
  edge e;
  edge_iterator ei;
  basic_block son;

  /* We are looking for all edges forming edge cut induced by
     set of all blocks postdominated by BB.  */
  FOR_EACH_EDGE (e, ei, cur->preds)
    if (e->src->index >= NUM_FIXED_BLOCKS
	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
    {
      edge e2;
      edge_iterator ei2;
      bool found = false;

      /* Ignore fake edges and eh, we predict them as not taken anyway.  */
      if (e->flags & (EDGE_EH | EDGE_FAKE))
	continue;
      gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));

      /* See if there is an edge from e->src that is not abnormal
	 and does not lead to BB.  */
      FOR_EACH_EDGE (e2, ei2, e->src->succs)
	if (e2 != e
	    && !(e2->flags & (EDGE_EH | EDGE_FAKE))
	    && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
	  {
	    found = true;
	    break;
	  }

      /* If there is non-abnormal path leaving e->src, predict edge
	 using predictor.  Otherwise we need to look for paths
	 leading to e->src.

	 The second may lead to infinite loop in the case we are predicitng
	 regions that are only reachable by abnormal edges.  We simply
	 prevent visiting given BB twice.  */
      if (found)
        predict_edge_def (e, pred, taken);
      else if (bitmap_set_bit (visited, e->src->index))
	predict_paths_for_bb (e->src, e->src, pred, taken, visited);
    }
  for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
       son;
       son = next_dom_son (CDI_POST_DOMINATORS, son))
    predict_paths_for_bb (son, bb, pred, taken, visited);
}

/* Sets branch probabilities according to PREDiction and
   FLAGS.  */

static void
predict_paths_leading_to (basic_block bb, enum br_predictor pred,
			  enum prediction taken)
{
  bitmap visited = BITMAP_ALLOC (NULL);
  predict_paths_for_bb (bb, bb, pred, taken, visited);
  BITMAP_FREE (visited);
}

/* Like predict_paths_leading_to but take edge instead of basic block.  */

static void
predict_paths_leading_to_edge (edge e, enum br_predictor pred,
			       enum prediction taken)
{
  bool has_nonloop_edge = false;
  edge_iterator ei;
  edge e2;

  basic_block bb = e->src;
  FOR_EACH_EDGE (e2, ei, bb->succs)
    if (e2->dest != e->src && e2->dest != e->dest
	&& !(e->flags & (EDGE_EH | EDGE_FAKE))
	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
      {
	has_nonloop_edge = true;
	break;
      }
  if (!has_nonloop_edge)
    {
      bitmap visited = BITMAP_ALLOC (NULL);
      predict_paths_for_bb (bb, bb, pred, taken, visited);
      BITMAP_FREE (visited);
    }
  else
    predict_edge_def (e, pred, taken);
}

/* This is used to carry information about basic blocks.  It is
   attached to the AUX field of the standard CFG block.  */

typedef struct block_info_def
{
  /* Estimated frequency of execution of basic_block.  */
  sreal frequency;

  /* To keep queue of basic blocks to process.  */
  basic_block next;

  /* Number of predecessors we need to visit first.  */
  int npredecessors;
} *block_info;

/* Similar information for edges.  */
typedef struct edge_info_def
{
  /* In case edge is a loopback edge, the probability edge will be reached
     in case header is.  Estimated number of iterations of the loop can be
     then computed as 1 / (1 - back_edge_prob).  */
  sreal back_edge_prob;
  /* True if the edge is a loopback edge in the natural loop.  */
  unsigned int back_edge:1;
} *edge_info;

#define BLOCK_INFO(B)	((block_info) (B)->aux)
#define EDGE_INFO(E)	((edge_info) (E)->aux)

/* Helper function for estimate_bb_frequencies.
   Propagate the frequencies in blocks marked in
   TOVISIT, starting in HEAD.  */

static void
propagate_freq (basic_block head, bitmap tovisit)
{
  basic_block bb;
  basic_block last;
  unsigned i;
  edge e;
  basic_block nextbb;
  bitmap_iterator bi;

  /* For each basic block we need to visit count number of his predecessors
     we need to visit first.  */
  EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
    {
      edge_iterator ei;
      int count = 0;

      bb = BASIC_BLOCK_FOR_FN (cfun, i);

      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  bool visit = bitmap_bit_p (tovisit, e->src->index);

	  if (visit && !(e->flags & EDGE_DFS_BACK))
	    count++;
	  else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
	    fprintf (dump_file,
		     "Irreducible region hit, ignoring edge to %i->%i\n",
		     e->src->index, bb->index);
	}
      BLOCK_INFO (bb)->npredecessors = count;
      /* When function never returns, we will never process exit block.  */
      if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
	bb->count = bb->frequency = 0;
    }

  memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
  last = head;
  for (bb = head; bb; bb = nextbb)
    {
      edge_iterator ei;
      sreal cyclic_probability, frequency;

      memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
      memcpy (&frequency, &real_zero, sizeof (real_zero));

      nextbb = BLOCK_INFO (bb)->next;
      BLOCK_INFO (bb)->next = NULL;

      /* Compute frequency of basic block.  */
      if (bb != head)
	{
#ifdef ENABLE_CHECKING
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
			|| (e->flags & EDGE_DFS_BACK));
#endif

	  FOR_EACH_EDGE (e, ei, bb->preds)
	    if (EDGE_INFO (e)->back_edge)
	      {
		sreal_add (&cyclic_probability, &cyclic_probability,
			   &EDGE_INFO (e)->back_edge_prob);
	      }
	    else if (!(e->flags & EDGE_DFS_BACK))
	      {
		sreal tmp;

		/*  frequency += (e->probability
				  * BLOCK_INFO (e->src)->frequency /
				  REG_BR_PROB_BASE);  */

		sreal_init (&tmp, e->probability, 0);
		sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
		sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
		sreal_add (&frequency, &frequency, &tmp);
	      }

	  if (sreal_compare (&cyclic_probability, &real_zero) == 0)
	    {
	      memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
		      sizeof (frequency));
	    }
	  else
	    {
	      if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
		{
		  memcpy (&cyclic_probability, &real_almost_one,
			  sizeof (real_almost_one));
		}

	      /* BLOCK_INFO (bb)->frequency = frequency
					      / (1 - cyclic_probability) */

	      sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
	      sreal_div (&BLOCK_INFO (bb)->frequency,
			 &frequency, &cyclic_probability);
	    }
	}

      bitmap_clear_bit (tovisit, bb->index);

      e = find_edge (bb, head);
      if (e)
	{
	  sreal tmp;

	  /* EDGE_INFO (e)->back_edge_prob
	     = ((e->probability * BLOCK_INFO (bb)->frequency)
	     / REG_BR_PROB_BASE); */

	  sreal_init (&tmp, e->probability, 0);
	  sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
	  sreal_mul (&EDGE_INFO (e)->back_edge_prob,
		     &tmp, &real_inv_br_prob_base);
	}

      /* Propagate to successor blocks.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!(e->flags & EDGE_DFS_BACK)
	    && BLOCK_INFO (e->dest)->npredecessors)
	  {
	    BLOCK_INFO (e->dest)->npredecessors--;
	    if (!BLOCK_INFO (e->dest)->npredecessors)
	      {
		if (!nextbb)
		  nextbb = e->dest;
		else
		  BLOCK_INFO (last)->next = e->dest;

		last = e->dest;
	      }
	  }
    }
}

/* Estimate frequencies in loops at same nest level.  */

static void
estimate_loops_at_level (struct loop *first_loop)
{
  struct loop *loop;

  for (loop = first_loop; loop; loop = loop->next)
    {
      edge e;
      basic_block *bbs;
      unsigned i;
      bitmap tovisit = BITMAP_ALLOC (NULL);

      estimate_loops_at_level (loop->inner);

      /* Find current loop back edge and mark it.  */
      e = loop_latch_edge (loop);
      EDGE_INFO (e)->back_edge = 1;

      bbs = get_loop_body (loop);
      for (i = 0; i < loop->num_nodes; i++)
	bitmap_set_bit (tovisit, bbs[i]->index);
      free (bbs);
      propagate_freq (loop->header, tovisit);
      BITMAP_FREE (tovisit);
    }
}

/* Propagates frequencies through structure of loops.  */

static void
estimate_loops (void)
{
  bitmap tovisit = BITMAP_ALLOC (NULL);
  basic_block bb;

  /* Start by estimating the frequencies in the loops.  */
  if (number_of_loops (cfun) > 1)
    estimate_loops_at_level (current_loops->tree_root->inner);

  /* Now propagate the frequencies through all the blocks.  */
  FOR_ALL_BB_FN (bb, cfun)
    {
      bitmap_set_bit (tovisit, bb->index);
    }
  propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
  BITMAP_FREE (tovisit);
}

/* Drop the profile for NODE to guessed, and update its frequency based on
   whether it is expected to be hot given the CALL_COUNT.  */

static void
drop_profile (struct cgraph_node *node, gcov_type call_count)
{
  struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
  /* In the case where this was called by another function with a
     dropped profile, call_count will be 0. Since there are no
     non-zero call counts to this function, we don't know for sure
     whether it is hot, and therefore it will be marked normal below.  */
  bool hot = maybe_hot_count_p (NULL, call_count);

  if (dump_file)
    fprintf (dump_file,
             "Dropping 0 profile for %s/%i. %s based on calls.\n",
             node->name (), node->order,
             hot ? "Function is hot" : "Function is normal");
  /* We only expect to miss profiles for functions that are reached
     via non-zero call edges in cases where the function may have
     been linked from another module or library (COMDATs and extern
     templates). See the comments below for handle_missing_profiles.
     Also, only warn in cases where the missing counts exceed the
     number of training runs. In certain cases with an execv followed
     by a no-return call the profile for the no-return call is not
     dumped and there can be a mismatch.  */
  if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
      && call_count > profile_info->runs)
    {
      if (flag_profile_correction)
        {
          if (dump_file)
            fprintf (dump_file,
                     "Missing counts for called function %s/%i\n",
                     node->name (), node->order);
        }
      else
        warning (0, "Missing counts for called function %s/%i",
                 node->name (), node->order);
    }

  profile_status_for_fn (fn)
      = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
  node->frequency
      = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
}

/* In the case of COMDAT routines, multiple object files will contain the same
   function and the linker will select one for the binary. In that case
   all the other copies from the profile instrument binary will be missing
   profile counts. Look for cases where this happened, due to non-zero
   call counts going to 0-count functions, and drop the profile to guessed
   so that we can use the estimated probabilities and avoid optimizing only
   for size.
   
   The other case where the profile may be missing is when the routine
   is not going to be emitted to the object file, e.g. for "extern template"
   class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
   all other cases of non-zero calls to 0-count functions.  */

void
handle_missing_profiles (void)
{
  struct cgraph_node *node;
  int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
  vec<struct cgraph_node *> worklist;
  worklist.create (64);

  /* See if 0 count function has non-0 count callers.  In this case we
     lost some profile.  Drop its function profile to PROFILE_GUESSED.  */
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      struct cgraph_edge *e;
      gcov_type call_count = 0;
      gcov_type max_tp_first_run = 0;
      struct function *fn = DECL_STRUCT_FUNCTION (node->decl);

      if (node->count)
        continue;
      for (e = node->callers; e; e = e->next_caller)
      {
        call_count += e->count;

	if (e->caller->tp_first_run > max_tp_first_run)
	  max_tp_first_run = e->caller->tp_first_run;
      }

      /* If time profile is missing, let assign the maximum that comes from
	 caller functions.  */
      if (!node->tp_first_run && max_tp_first_run)
	node->tp_first_run = max_tp_first_run + 1;

      if (call_count
          && fn && fn->cfg
          && (call_count * unlikely_count_fraction >= profile_info->runs))
        {
          drop_profile (node, call_count);
          worklist.safe_push (node);
        }
    }

  /* Propagate the profile dropping to other 0-count COMDATs that are
     potentially called by COMDATs we already dropped the profile on.  */
  while (worklist.length () > 0)
    {
      struct cgraph_edge *e;

      node = worklist.pop ();
      for (e = node->callees; e; e = e->next_caller)
        {
          struct cgraph_node *callee = e->callee;
          struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);

          if (callee->count > 0)
            continue;
          if (DECL_COMDAT (callee->decl) && fn && fn->cfg
              && profile_status_for_fn (fn) == PROFILE_READ)
            {
              drop_profile (node, 0);
              worklist.safe_push (callee);
            }
        }
    }
  worklist.release ();
}

/* Convert counts measured by profile driven feedback to frequencies.
   Return nonzero iff there was any nonzero execution count.  */

int
counts_to_freqs (void)
{
  gcov_type count_max, true_count_max = 0;
  basic_block bb;

  /* Don't overwrite the estimated frequencies when the profile for
     the function is missing.  We may drop this function PROFILE_GUESSED
     later in drop_profile ().  */
  if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
    return 0;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
    true_count_max = MAX (bb->count, true_count_max);

  count_max = MAX (true_count_max, 1);
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
    bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;

  return true_count_max;
}

/* Return true if function is likely to be expensive, so there is no point to
   optimize performance of prologue, epilogue or do inlining at the expense
   of code size growth.  THRESHOLD is the limit of number of instructions
   function can execute at average to be still considered not expensive.  */

bool
expensive_function_p (int threshold)
{
  unsigned int sum = 0;
  basic_block bb;
  unsigned int limit;

  /* We can not compute accurately for large thresholds due to scaled
     frequencies.  */
  gcc_assert (threshold <= BB_FREQ_MAX);

  /* Frequencies are out of range.  This either means that function contains
     internal loop executing more than BB_FREQ_MAX times or profile feedback
     is available and function has not been executed at all.  */
  if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
    return true;

  /* Maximally BB_FREQ_MAX^2 so overflow won't happen.  */
  limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx insn;

      FOR_BB_INSNS (bb, insn)
	if (active_insn_p (insn))
	  {
	    sum += bb->frequency;
	    if (sum > limit)
	      return true;
	}
    }

  return false;
}

/* Estimate and propagate basic block frequencies using the given branch
   probabilities.  If FORCE is true, the frequencies are used to estimate
   the counts even when there are already non-zero profile counts.  */

void
estimate_bb_frequencies (bool force)
{
  basic_block bb;
  sreal freq_max;

  if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
    {
      static int real_values_initialized = 0;

      if (!real_values_initialized)
        {
	  real_values_initialized = 1;
	  sreal_init (&real_zero, 0, 0);
	  sreal_init (&real_one, 1, 0);
	  sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
	  sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
	  sreal_init (&real_one_half, 1, -1);
	  sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
	  sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
	}

      mark_dfs_back_edges ();

      single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
	 REG_BR_PROB_BASE;

      /* Set up block info for each basic block.  */
      alloc_aux_for_blocks (sizeof (struct block_info_def));
      alloc_aux_for_edges (sizeof (struct edge_info_def));
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
	{
	  edge e;
	  edge_iterator ei;

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
	      sreal_mul (&EDGE_INFO (e)->back_edge_prob,
			 &EDGE_INFO (e)->back_edge_prob,
			 &real_inv_br_prob_base);
	    }
	}

      /* First compute frequencies locally for each loop from innermost
         to outermost to examine frequencies for back edges.  */
      estimate_loops ();

      memcpy (&freq_max, &real_zero, sizeof (real_zero));
      FOR_EACH_BB_FN (bb, cfun)
	if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
	  memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));

      sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
	{
	  sreal tmp;

	  sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
	  sreal_add (&tmp, &tmp, &real_one_half);
	  bb->frequency = sreal_to_int (&tmp);
	}

      free_aux_for_blocks ();
      free_aux_for_edges ();
    }
  compute_function_frequency ();
}

/* Decide whether function is hot, cold or unlikely executed.  */
void
compute_function_frequency (void)
{
  basic_block bb;
  struct cgraph_node *node = cgraph_get_node (current_function_decl);

  if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
      || MAIN_NAME_P (DECL_NAME (current_function_decl)))
    node->only_called_at_startup = true;
  if (DECL_STATIC_DESTRUCTOR (current_function_decl))
    node->only_called_at_exit = true;

  if (profile_status_for_fn (cfun) != PROFILE_READ)
    {
      int flags = flags_from_decl_or_type (current_function_decl);
      if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
	  != NULL)
        node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
      else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
	       != NULL)
        node->frequency = NODE_FREQUENCY_HOT;
      else if (flags & ECF_NORETURN)
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
	       || DECL_STATIC_DESTRUCTOR (current_function_decl))
        node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
      return;
    }

  /* Only first time try to drop function into unlikely executed.
     After inlining the roundoff errors may confuse us.
     Ipa-profile pass will drop functions only called from unlikely
     functions to unlikely and that is most of what we care about.  */
  if (!cfun->after_inlining)
    node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
  FOR_EACH_BB_FN (bb, cfun)
    {
      if (maybe_hot_bb_p (cfun, bb))
	{
	  node->frequency = NODE_FREQUENCY_HOT;
	  return;
	}
      if (!probably_never_executed_bb_p (cfun, bb))
	node->frequency = NODE_FREQUENCY_NORMAL;
    }
}

/* Build PREDICT_EXPR.  */
tree
build_predict_expr (enum br_predictor predictor, enum prediction taken)
{
  tree t = build1 (PREDICT_EXPR, void_type_node,
		   build_int_cst (integer_type_node, predictor));
  SET_PREDICT_EXPR_OUTCOME (t, taken);
  return t;
}

const char *
predictor_name (enum br_predictor predictor)
{
  return predictor_info[predictor].name;
}

/* Predict branch probabilities and estimate profile of the tree CFG. */

namespace {

const pass_data pass_data_profile =
{
  GIMPLE_PASS, /* type */
  "profile_estimate", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_execute */
  TV_BRANCH_PROB, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_verify_ssa, /* todo_flags_finish */
};

class pass_profile : public gimple_opt_pass
{
public:
  pass_profile (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_profile, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_guess_branch_prob; }
  virtual unsigned int execute (function *);

}; // class pass_profile

unsigned int
pass_profile::execute (function *fun)
{
  unsigned nb_loops;

  loop_optimizer_init (LOOPS_NORMAL);
  if (dump_file && (dump_flags & TDF_DETAILS))
    flow_loops_dump (dump_file, NULL, 0);

  mark_irreducible_loops ();

  nb_loops = number_of_loops (fun);
  if (nb_loops > 1)
    scev_initialize ();

  tree_estimate_probability ();

  if (nb_loops > 1)
    scev_finalize ();

  loop_optimizer_finalize ();
  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags);
 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
    profile_status_for_fn (fun) = PROFILE_GUESSED;
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_profile (gcc::context *ctxt)
{
  return new pass_profile (ctxt);
}

namespace {

const pass_data pass_data_strip_predict_hints =
{
  GIMPLE_PASS, /* type */
  "*strip_predict_hints", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_execute */
  TV_BRANCH_PROB, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_verify_ssa, /* todo_flags_finish */
};

class pass_strip_predict_hints : public gimple_opt_pass
{
public:
  pass_strip_predict_hints (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
  virtual unsigned int execute (function *);

}; // class pass_strip_predict_hints

/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
   we no longer need.  */
unsigned int
pass_strip_predict_hints::execute (function *fun)
{
  basic_block bb;
  gimple ass_stmt;
  tree var;

  FOR_EACH_BB_FN (bb, fun)
    {
      gimple_stmt_iterator bi;
      for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
	{
	  gimple stmt = gsi_stmt (bi);

	  if (gimple_code (stmt) == GIMPLE_PREDICT)
	    {
	      gsi_remove (&bi, true);
	      continue;
	    }
	  else if (is_gimple_call (stmt))
	    {
	      tree fndecl = gimple_call_fndecl (stmt);

	      if ((fndecl
		   && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
		   && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
		   && gimple_call_num_args (stmt) == 2)
		  || (gimple_call_internal_p (stmt)
		      && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
		{
		  var = gimple_call_lhs (stmt);
		  if (var)
		    {
		      ass_stmt
			= gimple_build_assign (var, gimple_call_arg (stmt, 0));
		      gsi_replace (&bi, ass_stmt, true);
		    }
		  else
		    {
		      gsi_remove (&bi, true);
		      continue;
		    }
		}
	    }
	  gsi_next (&bi);
	}
    }
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_strip_predict_hints (gcc::context *ctxt)
{
  return new pass_strip_predict_hints (ctxt);
}

/* Rebuild function frequencies.  Passes are in general expected to
   maintain profile by hand, however in some cases this is not possible:
   for example when inlining several functions with loops freuqencies might run
   out of scale and thus needs to be recomputed.  */

void
rebuild_frequencies (void)
{
  timevar_push (TV_REBUILD_FREQUENCIES);

  /* When the max bb count in the function is small, there is a higher
     chance that there were truncation errors in the integer scaling
     of counts by inlining and other optimizations. This could lead
     to incorrect classification of code as being cold when it isn't.
     In that case, force the estimation of bb counts/frequencies from the
     branch probabilities, rather than computing frequencies from counts,
     which may also lead to frequencies incorrectly reduced to 0. There
     is less precision in the probabilities, so we only do this for small
     max counts.  */
  gcov_type count_max = 0;
  basic_block bb;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
    count_max = MAX (bb->count, count_max);

  if (profile_status_for_fn (cfun) == PROFILE_GUESSED
      || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
    {
      loop_optimizer_init (0);
      add_noreturn_fake_exit_edges ();
      mark_irreducible_loops ();
      connect_infinite_loops_to_exit ();
      estimate_bb_frequencies (true);
      remove_fake_exit_edges ();
      loop_optimizer_finalize ();
    }
  else if (profile_status_for_fn (cfun) == PROFILE_READ)
    counts_to_freqs ();
  else
    gcc_unreachable ();
  timevar_pop (TV_REBUILD_FREQUENCIES);
}