1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
|
/* Build live ranges for pseudos.
Copyright (C) 2010-2014 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains code to build pseudo live-ranges (analogous
structures used in IRA, so read comments about the live-ranges
there) and other info necessary for other passes to assign
hard-registers to pseudos, coalesce the spilled pseudos, and assign
stack memory slots to spilled pseudos. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "regs.h"
#include "function.h"
#include "expr.h"
#include "basic-block.h"
#include "except.h"
#include "df.h"
#include "ira.h"
#include "sparseset.h"
#include "lra-int.h"
/* Program points are enumerated by numbers from range
0..LRA_LIVE_MAX_POINT-1. There are approximately two times more
program points than insns. Program points are places in the
program where liveness info can be changed. In most general case
(there are more complicated cases too) some program points
correspond to places where input operand dies and other ones
correspond to places where output operands are born. */
int lra_live_max_point;
/* Accumulated execution frequency of all references for each hard
register. */
int lra_hard_reg_usage[FIRST_PSEUDO_REGISTER];
/* A global flag whose true value says to build live ranges for all
pseudos, otherwise the live ranges only for pseudos got memory is
build. True value means also building copies and setting up hard
register preferences. The complete info is necessary only for the
assignment pass. The complete info is not needed for the
coalescing and spill passes. */
static bool complete_info_p;
/* Pseudos live at current point in the RTL scan. */
static sparseset pseudos_live;
/* Pseudos probably living through calls and setjumps. As setjump is
a call too, if a bit in PSEUDOS_LIVE_THROUGH_SETJUMPS is set up
then the corresponding bit in PSEUDOS_LIVE_THROUGH_CALLS is set up
too. These data are necessary for cases when only one subreg of a
multi-reg pseudo is set up after a call. So we decide it is
probably live when traversing bb backward. We are sure about
living when we see its usage or definition of the pseudo. */
static sparseset pseudos_live_through_calls;
static sparseset pseudos_live_through_setjumps;
/* Set of hard regs (except eliminable ones) currently live. */
static HARD_REG_SET hard_regs_live;
/* Set of pseudos and hard registers start living/dying in the current
insn. These sets are used to update REG_DEAD and REG_UNUSED notes
in the insn. */
static sparseset start_living, start_dying;
/* Set of pseudos and hard regs dead and unused in the current
insn. */
static sparseset unused_set, dead_set;
/* Pool for pseudo live ranges. */
static alloc_pool live_range_pool;
/* Free live range LR. */
static void
free_live_range (lra_live_range_t lr)
{
pool_free (live_range_pool, lr);
}
/* Free live range list LR. */
static void
free_live_range_list (lra_live_range_t lr)
{
lra_live_range_t next;
while (lr != NULL)
{
next = lr->next;
free_live_range (lr);
lr = next;
}
}
/* Create and return pseudo live range with given attributes. */
static lra_live_range_t
create_live_range (int regno, int start, int finish, lra_live_range_t next)
{
lra_live_range_t p;
p = (lra_live_range_t) pool_alloc (live_range_pool);
p->regno = regno;
p->start = start;
p->finish = finish;
p->next = next;
return p;
}
/* Copy live range R and return the result. */
static lra_live_range_t
copy_live_range (lra_live_range_t r)
{
lra_live_range_t p;
p = (lra_live_range_t) pool_alloc (live_range_pool);
*p = *r;
return p;
}
/* Copy live range list given by its head R and return the result. */
lra_live_range_t
lra_copy_live_range_list (lra_live_range_t r)
{
lra_live_range_t p, first, *chain;
first = NULL;
for (chain = &first; r != NULL; r = r->next)
{
p = copy_live_range (r);
*chain = p;
chain = &p->next;
}
return first;
}
/* Merge *non-intersected* ranges R1 and R2 and returns the result.
The function maintains the order of ranges and tries to minimize
size of the result range list. Ranges R1 and R2 may not be used
after the call. */
lra_live_range_t
lra_merge_live_ranges (lra_live_range_t r1, lra_live_range_t r2)
{
lra_live_range_t first, last, temp;
if (r1 == NULL)
return r2;
if (r2 == NULL)
return r1;
for (first = last = NULL; r1 != NULL && r2 != NULL;)
{
if (r1->start < r2->start)
{
temp = r1;
r1 = r2;
r2 = temp;
}
if (r1->start == r2->finish + 1)
{
/* Joint ranges: merge r1 and r2 into r1. */
r1->start = r2->start;
temp = r2;
r2 = r2->next;
pool_free (live_range_pool, temp);
}
else
{
gcc_assert (r2->finish + 1 < r1->start);
/* Add r1 to the result. */
if (first == NULL)
first = last = r1;
else
{
last->next = r1;
last = r1;
}
r1 = r1->next;
}
}
if (r1 != NULL)
{
if (first == NULL)
first = r1;
else
last->next = r1;
}
else
{
lra_assert (r2 != NULL);
if (first == NULL)
first = r2;
else
last->next = r2;
}
return first;
}
/* Return TRUE if live ranges R1 and R2 intersect. */
bool
lra_intersected_live_ranges_p (lra_live_range_t r1, lra_live_range_t r2)
{
/* Remember the live ranges are always kept ordered. */
while (r1 != NULL && r2 != NULL)
{
if (r1->start > r2->finish)
r1 = r1->next;
else if (r2->start > r1->finish)
r2 = r2->next;
else
return true;
}
return false;
}
/* The function processing birth of hard register REGNO. It updates
living hard regs, conflict hard regs for living pseudos, and
START_LIVING. */
static void
make_hard_regno_born (int regno)
{
unsigned int i;
lra_assert (regno < FIRST_PSEUDO_REGISTER);
if (TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
|| TEST_HARD_REG_BIT (hard_regs_live, regno))
return;
SET_HARD_REG_BIT (hard_regs_live, regno);
sparseset_set_bit (start_living, regno);
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
SET_HARD_REG_BIT (lra_reg_info[i].conflict_hard_regs, regno);
}
/* Process the death of hard register REGNO. This updates
hard_regs_live and START_DYING. */
static void
make_hard_regno_dead (int regno)
{
lra_assert (regno < FIRST_PSEUDO_REGISTER);
if (TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
|| ! TEST_HARD_REG_BIT (hard_regs_live, regno))
return;
sparseset_set_bit (start_dying, regno);
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
}
/* Mark pseudo REGNO as living at program point POINT, update conflicting
hard registers of the pseudo and START_LIVING, and start a new live
range for the pseudo corresponding to REGNO if it is necessary. */
static void
mark_pseudo_live (int regno, int point)
{
lra_live_range_t p;
lra_assert (regno >= FIRST_PSEUDO_REGISTER);
lra_assert (! sparseset_bit_p (pseudos_live, regno));
sparseset_set_bit (pseudos_live, regno);
IOR_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs, hard_regs_live);
if ((complete_info_p || lra_get_regno_hard_regno (regno) < 0)
&& ((p = lra_reg_info[regno].live_ranges) == NULL
|| (p->finish != point && p->finish + 1 != point)))
lra_reg_info[regno].live_ranges
= create_live_range (regno, point, -1, p);
sparseset_set_bit (start_living, regno);
}
/* Mark pseudo REGNO as not living at program point POINT and update
START_DYING.
This finishes the current live range for the pseudo corresponding
to REGNO. */
static void
mark_pseudo_dead (int regno, int point)
{
lra_live_range_t p;
lra_assert (regno >= FIRST_PSEUDO_REGISTER);
lra_assert (sparseset_bit_p (pseudos_live, regno));
sparseset_clear_bit (pseudos_live, regno);
sparseset_set_bit (start_dying, regno);
if (complete_info_p || lra_get_regno_hard_regno (regno) < 0)
{
p = lra_reg_info[regno].live_ranges;
lra_assert (p != NULL);
p->finish = point;
}
}
/* Mark register REGNO (pseudo or hard register) in MODE as live
at program point POINT.
Return TRUE if the liveness tracking sets were modified,
or FALSE if nothing changed. */
static bool
mark_regno_live (int regno, enum machine_mode mode, int point)
{
int last;
bool changed = false;
if (regno < FIRST_PSEUDO_REGISTER)
{
for (last = regno + hard_regno_nregs[regno][mode];
regno < last;
regno++)
make_hard_regno_born (regno);
}
else if (! sparseset_bit_p (pseudos_live, regno))
{
mark_pseudo_live (regno, point);
changed = true;
}
return changed;
}
/* Mark register REGNO in MODE as dead at program point POINT.
Return TRUE if the liveness tracking sets were modified,
or FALSE if nothing changed. */
static bool
mark_regno_dead (int regno, enum machine_mode mode, int point)
{
int last;
bool changed = false;
if (regno < FIRST_PSEUDO_REGISTER)
{
for (last = regno + hard_regno_nregs[regno][mode];
regno < last;
regno++)
make_hard_regno_dead (regno);
}
else if (sparseset_bit_p (pseudos_live, regno))
{
mark_pseudo_dead (regno, point);
changed = true;
}
return changed;
}
/* Insn currently scanned. */
static rtx curr_insn;
/* The insn data. */
static lra_insn_recog_data_t curr_id;
/* The insn static data. */
static struct lra_static_insn_data *curr_static_id;
/* Return true when one of the predecessor edges of BB is marked with
EDGE_ABNORMAL_CALL or EDGE_EH. */
static bool
bb_has_abnormal_call_pred (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
return true;
}
return false;
}
/* Vec containing execution frequencies of program points. */
static vec<int> point_freq_vec;
/* The start of the above vector elements. */
int *lra_point_freq;
/* Increment the current program point POINT to the next point which has
execution frequency FREQ. */
static void
next_program_point (int &point, int freq)
{
point_freq_vec.safe_push (freq);
lra_point_freq = point_freq_vec.address ();
point++;
}
/* Update the preference of HARD_REGNO for pseudo REGNO by PROFIT. */
void
lra_setup_reload_pseudo_preferenced_hard_reg (int regno,
int hard_regno, int profit)
{
lra_assert (regno >= lra_constraint_new_regno_start);
if (lra_reg_info[regno].preferred_hard_regno1 == hard_regno)
lra_reg_info[regno].preferred_hard_regno_profit1 += profit;
else if (lra_reg_info[regno].preferred_hard_regno2 == hard_regno)
lra_reg_info[regno].preferred_hard_regno_profit2 += profit;
else if (lra_reg_info[regno].preferred_hard_regno1 < 0)
{
lra_reg_info[regno].preferred_hard_regno1 = hard_regno;
lra_reg_info[regno].preferred_hard_regno_profit1 = profit;
}
else if (lra_reg_info[regno].preferred_hard_regno2 < 0
|| profit > lra_reg_info[regno].preferred_hard_regno_profit2)
{
lra_reg_info[regno].preferred_hard_regno2 = hard_regno;
lra_reg_info[regno].preferred_hard_regno_profit2 = profit;
}
else
return;
/* Keep the 1st hard regno as more profitable. */
if (lra_reg_info[regno].preferred_hard_regno1 >= 0
&& lra_reg_info[regno].preferred_hard_regno2 >= 0
&& (lra_reg_info[regno].preferred_hard_regno_profit2
> lra_reg_info[regno].preferred_hard_regno_profit1))
{
int temp;
temp = lra_reg_info[regno].preferred_hard_regno1;
lra_reg_info[regno].preferred_hard_regno1
= lra_reg_info[regno].preferred_hard_regno2;
lra_reg_info[regno].preferred_hard_regno2 = temp;
temp = lra_reg_info[regno].preferred_hard_regno_profit1;
lra_reg_info[regno].preferred_hard_regno_profit1
= lra_reg_info[regno].preferred_hard_regno_profit2;
lra_reg_info[regno].preferred_hard_regno_profit2 = temp;
}
if (lra_dump_file != NULL)
{
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0)
fprintf (lra_dump_file,
" Hard reg %d is preferable by r%d with profit %d\n",
hard_regno, regno,
lra_reg_info[regno].preferred_hard_regno_profit1);
if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0)
fprintf (lra_dump_file,
" Hard reg %d is preferable by r%d with profit %d\n",
hard_regno, regno,
lra_reg_info[regno].preferred_hard_regno_profit2);
}
}
/* Check that REGNO living through calls and setjumps, set up conflict
regs, and clear corresponding bits in PSEUDOS_LIVE_THROUGH_CALLS and
PSEUDOS_LIVE_THROUGH_SETJUMPS. */
static inline void
check_pseudos_live_through_calls (int regno)
{
int hr;
if (! sparseset_bit_p (pseudos_live_through_calls, regno))
return;
sparseset_clear_bit (pseudos_live_through_calls, regno);
IOR_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs,
call_used_reg_set);
for (hr = 0; hr < FIRST_PSEUDO_REGISTER; hr++)
if (HARD_REGNO_CALL_PART_CLOBBERED (hr, PSEUDO_REGNO_MODE (regno)))
SET_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hr);
#ifdef ENABLE_CHECKING
lra_reg_info[regno].call_p = true;
#endif
if (! sparseset_bit_p (pseudos_live_through_setjumps, regno))
return;
sparseset_clear_bit (pseudos_live_through_setjumps, regno);
/* Don't allocate pseudos that cross setjmps or any call, if this
function receives a nonlocal goto. */
SET_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs);
}
/* Process insns of the basic block BB to update pseudo live ranges,
pseudo hard register conflicts, and insn notes. We do it on
backward scan of BB insns. CURR_POINT is the program point where
BB ends. The function updates this counter and returns in
CURR_POINT the program point where BB starts. */
static void
process_bb_lives (basic_block bb, int &curr_point)
{
int i, regno, freq;
unsigned int j;
bitmap_iterator bi;
bitmap reg_live_out;
unsigned int px;
rtx link, *link_loc;
bool need_curr_point_incr;
reg_live_out = df_get_live_out (bb);
sparseset_clear (pseudos_live);
sparseset_clear (pseudos_live_through_calls);
sparseset_clear (pseudos_live_through_setjumps);
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
AND_COMPL_HARD_REG_SET (hard_regs_live, lra_no_alloc_regs);
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
mark_pseudo_live (j, curr_point);
freq = REG_FREQ_FROM_BB (bb);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " BB %d\n", bb->index);
/* Scan the code of this basic block, noting which pseudos and hard
regs are born or die.
Note that this loop treats uninitialized values as live until the
beginning of the block. For example, if an instruction uses
(reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever set,
FOO will remain live until the beginning of the block. Likewise
if FOO is not set at all. This is unnecessarily pessimistic, but
it probably doesn't matter much in practice. */
FOR_BB_INSNS_REVERSE (bb, curr_insn)
{
bool call_p;
int dst_regno, src_regno;
rtx set;
struct lra_insn_reg *reg;
if (!NONDEBUG_INSN_P (curr_insn))
continue;
curr_id = lra_get_insn_recog_data (curr_insn);
curr_static_id = curr_id->insn_static_data;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Insn %u: point = %d\n",
INSN_UID (curr_insn), curr_point);
/* Update max ref width and hard reg usage. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->regno >= FIRST_PSEUDO_REGISTER
&& (GET_MODE_SIZE (reg->biggest_mode)
> GET_MODE_SIZE (lra_reg_info[reg->regno].biggest_mode)))
lra_reg_info[reg->regno].biggest_mode = reg->biggest_mode;
else if (reg->regno < FIRST_PSEUDO_REGISTER)
lra_hard_reg_usage[reg->regno] += freq;
call_p = CALL_P (curr_insn);
if (complete_info_p
&& (set = single_set (curr_insn)) != NULL_RTX
&& REG_P (SET_DEST (set)) && REG_P (SET_SRC (set))
/* Check that source regno does not conflict with
destination regno to exclude most impossible
preferences. */
&& ((((src_regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
&& ! sparseset_bit_p (pseudos_live, src_regno))
|| (src_regno < FIRST_PSEUDO_REGISTER
&& ! TEST_HARD_REG_BIT (hard_regs_live, src_regno)))
/* It might be 'inheritance pseudo <- reload pseudo'. */
|| (src_regno >= lra_constraint_new_regno_start
&& ((int) REGNO (SET_DEST (set))
>= lra_constraint_new_regno_start))))
{
int hard_regno = -1, regno = -1;
dst_regno = REGNO (SET_DEST (set));
if (dst_regno >= lra_constraint_new_regno_start
&& src_regno >= lra_constraint_new_regno_start)
lra_create_copy (dst_regno, src_regno, freq);
else if (dst_regno >= lra_constraint_new_regno_start)
{
if ((hard_regno = src_regno) >= FIRST_PSEUDO_REGISTER)
hard_regno = reg_renumber[src_regno];
regno = dst_regno;
}
else if (src_regno >= lra_constraint_new_regno_start)
{
if ((hard_regno = dst_regno) >= FIRST_PSEUDO_REGISTER)
hard_regno = reg_renumber[dst_regno];
regno = src_regno;
}
if (regno >= 0 && hard_regno >= 0)
lra_setup_reload_pseudo_preferenced_hard_reg
(regno, hard_regno, freq);
}
sparseset_clear (start_living);
/* Try to avoid unnecessary program point increments, this saves
a lot of time in remove_some_program_points_and_update_live_ranges.
We only need an increment if something becomes live or dies at this
program point. */
need_curr_point_incr = false;
/* Mark each defined value as live. We need to do this for
unused values because they still conflict with quantities
that are live at the time of the definition. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
{
need_curr_point_incr |= mark_regno_live (reg->regno,
reg->biggest_mode,
curr_point);
check_pseudos_live_through_calls (reg->regno);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type != OP_IN)
make_hard_regno_born (reg->regno);
sparseset_copy (unused_set, start_living);
sparseset_clear (start_dying);
/* See which defined values die here. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type == OP_OUT && ! reg->early_clobber && ! reg->subreg_p)
need_curr_point_incr |= mark_regno_dead (reg->regno,
reg->biggest_mode,
curr_point);
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type == OP_OUT && ! reg->early_clobber && ! reg->subreg_p)
make_hard_regno_dead (reg->regno);
if (call_p)
{
sparseset_ior (pseudos_live_through_calls,
pseudos_live_through_calls, pseudos_live);
if (cfun->has_nonlocal_label
|| find_reg_note (curr_insn, REG_SETJMP,
NULL_RTX) != NULL_RTX)
sparseset_ior (pseudos_live_through_setjumps,
pseudos_live_through_setjumps, pseudos_live);
}
/* Increment the current program point if we must. */
if (need_curr_point_incr)
next_program_point (curr_point, freq);
sparseset_clear (start_living);
need_curr_point_incr = false;
/* Mark each used value as live. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type == OP_IN)
{
need_curr_point_incr |= mark_regno_live (reg->regno,
reg->biggest_mode,
curr_point);
check_pseudos_live_through_calls (reg->regno);
}
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type == OP_IN)
make_hard_regno_born (reg->regno);
if (curr_id->arg_hard_regs != NULL)
/* Make argument hard registers live. */
for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
make_hard_regno_born (regno);
sparseset_and_compl (dead_set, start_living, start_dying);
/* Mark early clobber outputs dead. */
for (reg = curr_id->regs; reg != NULL; reg = reg->next)
if (reg->type == OP_OUT && reg->early_clobber && ! reg->subreg_p)
need_curr_point_incr = mark_regno_dead (reg->regno,
reg->biggest_mode,
curr_point);
for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
if (reg->type == OP_OUT && reg->early_clobber && ! reg->subreg_p)
make_hard_regno_dead (reg->regno);
if (need_curr_point_incr)
next_program_point (curr_point, freq);
/* Update notes. */
for (link_loc = ®_NOTES (curr_insn); (link = *link_loc) != NULL_RTX;)
{
if (REG_NOTE_KIND (link) != REG_DEAD
&& REG_NOTE_KIND (link) != REG_UNUSED)
;
else if (REG_P (XEXP (link, 0)))
{
regno = REGNO (XEXP (link, 0));
if ((REG_NOTE_KIND (link) == REG_DEAD
&& ! sparseset_bit_p (dead_set, regno))
|| (REG_NOTE_KIND (link) == REG_UNUSED
&& ! sparseset_bit_p (unused_set, regno)))
{
*link_loc = XEXP (link, 1);
continue;
}
if (REG_NOTE_KIND (link) == REG_DEAD)
sparseset_clear_bit (dead_set, regno);
else if (REG_NOTE_KIND (link) == REG_UNUSED)
sparseset_clear_bit (unused_set, regno);
}
link_loc = &XEXP (link, 1);
}
EXECUTE_IF_SET_IN_SPARSESET (dead_set, j)
add_reg_note (curr_insn, REG_DEAD, regno_reg_rtx[j]);
EXECUTE_IF_SET_IN_SPARSESET (unused_set, j)
add_reg_note (curr_insn, REG_UNUSED, regno_reg_rtx[j]);
}
#ifdef EH_RETURN_DATA_REGNO
if (bb_has_eh_pred (bb))
for (j = 0; ; ++j)
{
unsigned int regno = EH_RETURN_DATA_REGNO (j);
if (regno == INVALID_REGNUM)
break;
make_hard_regno_born (regno);
}
#endif
/* Pseudos can't go in stack regs at the start of a basic block that
is reached by an abnormal edge. Likewise for call clobbered regs,
because caller-save, fixup_abnormal_edges and possibly the table
driven EH machinery are not quite ready to handle such pseudos
live across such edges. */
if (bb_has_abnormal_pred (bb))
{
#ifdef STACK_REGS
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, px)
lra_reg_info[px].no_stack_p = true;
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
make_hard_regno_born (px);
#endif
/* No need to record conflicts for call clobbered regs if we
have nonlocal labels around, as we don't ever try to
allocate such regs in this case. */
if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
if (call_used_regs[px])
make_hard_regno_born (px);
}
/* See if we'll need an increment at the end of this basic block.
An increment is needed if the PSEUDOS_LIVE set is not empty,
to make sure the finish points are set up correctly. */
need_curr_point_incr = (sparseset_cardinality (pseudos_live) > 0);
EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
mark_pseudo_dead (i, curr_point);
EXECUTE_IF_SET_IN_BITMAP (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, j, bi)
{
if (sparseset_cardinality (pseudos_live_through_calls) == 0)
break;
if (sparseset_bit_p (pseudos_live_through_calls, j))
check_pseudos_live_through_calls (j);
}
if (need_curr_point_incr)
next_program_point (curr_point, freq);
}
/* Compress pseudo live ranges by removing program points where
nothing happens. Complexity of many algorithms in LRA is linear
function of program points number. To speed up the code we try to
minimize the number of the program points here. */
static void
remove_some_program_points_and_update_live_ranges (void)
{
unsigned i;
int n, max_regno;
int *map;
lra_live_range_t r, prev_r, next_r;
sbitmap born_or_dead, born, dead;
sbitmap_iterator sbi;
bool born_p, dead_p, prev_born_p, prev_dead_p;
born = sbitmap_alloc (lra_live_max_point);
dead = sbitmap_alloc (lra_live_max_point);
bitmap_clear (born);
bitmap_clear (dead);
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
{
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
{
lra_assert (r->start <= r->finish);
bitmap_set_bit (born, r->start);
bitmap_set_bit (dead, r->finish);
}
}
born_or_dead = sbitmap_alloc (lra_live_max_point);
bitmap_ior (born_or_dead, born, dead);
map = XCNEWVEC (int, lra_live_max_point);
n = -1;
prev_born_p = prev_dead_p = false;
EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
{
born_p = bitmap_bit_p (born, i);
dead_p = bitmap_bit_p (dead, i);
if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
|| (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
{
map[i] = n;
lra_point_freq[n] = MAX (lra_point_freq[n], lra_point_freq[i]);
}
else
{
map[i] = ++n;
lra_point_freq[n] = lra_point_freq[i];
}
prev_born_p = born_p;
prev_dead_p = dead_p;
}
sbitmap_free (born_or_dead);
sbitmap_free (born);
sbitmap_free (dead);
n++;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
lra_live_max_point, n, 100 * n / lra_live_max_point);
if (n < lra_live_max_point)
{
lra_live_max_point = n;
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
{
for (prev_r = NULL, r = lra_reg_info[i].live_ranges;
r != NULL;
r = next_r)
{
next_r = r->next;
r->start = map[r->start];
r->finish = map[r->finish];
if (prev_r == NULL || prev_r->start > r->finish + 1)
{
prev_r = r;
continue;
}
prev_r->start = r->start;
prev_r->next = next_r;
free_live_range (r);
}
}
}
free (map);
}
/* Print live ranges R to file F. */
void
lra_print_live_range_list (FILE *f, lra_live_range_t r)
{
for (; r != NULL; r = r->next)
fprintf (f, " [%d..%d]", r->start, r->finish);
fprintf (f, "\n");
}
DEBUG_FUNCTION void
debug (lra_live_range &ref)
{
lra_print_live_range_list (stderr, &ref);
}
DEBUG_FUNCTION void
debug (lra_live_range *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Print live ranges R to stderr. */
void
lra_debug_live_range_list (lra_live_range_t r)
{
lra_print_live_range_list (stderr, r);
}
/* Print live ranges of pseudo REGNO to file F. */
static void
print_pseudo_live_ranges (FILE *f, int regno)
{
if (lra_reg_info[regno].live_ranges == NULL)
return;
fprintf (f, " r%d:", regno);
lra_print_live_range_list (f, lra_reg_info[regno].live_ranges);
}
/* Print live ranges of pseudo REGNO to stderr. */
void
lra_debug_pseudo_live_ranges (int regno)
{
print_pseudo_live_ranges (stderr, regno);
}
/* Print live ranges of all pseudos to file F. */
static void
print_live_ranges (FILE *f)
{
int i, max_regno;
max_regno = max_reg_num ();
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
print_pseudo_live_ranges (f, i);
}
/* Print live ranges of all pseudos to stderr. */
void
lra_debug_live_ranges (void)
{
print_live_ranges (stderr);
}
/* Compress pseudo live ranges. */
static void
compress_live_ranges (void)
{
remove_some_program_points_and_update_live_ranges ();
if (lra_dump_file != NULL)
{
fprintf (lra_dump_file, "Ranges after the compression:\n");
print_live_ranges (lra_dump_file);
}
}
/* The number of the current live range pass. */
int lra_live_range_iter;
/* The main entry function creates live ranges only for memory pseudos
(or for all ones if ALL_P), set up CONFLICT_HARD_REGS for
the pseudos. */
void
lra_create_live_ranges (bool all_p)
{
basic_block bb;
int i, hard_regno, max_regno = max_reg_num ();
int curr_point;
bool have_referenced_pseudos = false;
timevar_push (TV_LRA_CREATE_LIVE_RANGES);
complete_info_p = all_p;
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
"\n********** Pseudo live ranges #%d: **********\n\n",
++lra_live_range_iter);
memset (lra_hard_reg_usage, 0, sizeof (lra_hard_reg_usage));
for (i = 0; i < max_regno; i++)
{
lra_reg_info[i].live_ranges = NULL;
CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
lra_reg_info[i].preferred_hard_regno1 = -1;
lra_reg_info[i].preferred_hard_regno2 = -1;
lra_reg_info[i].preferred_hard_regno_profit1 = 0;
lra_reg_info[i].preferred_hard_regno_profit2 = 0;
#ifdef STACK_REGS
lra_reg_info[i].no_stack_p = false;
#endif
/* The biggest mode is already set but its value might be to
conservative because of recent transformation. Here in this
file we recalculate it again as it costs practically
nothing. */
if (regno_reg_rtx[i] != NULL_RTX)
lra_reg_info[i].biggest_mode = GET_MODE (regno_reg_rtx[i]);
else
lra_reg_info[i].biggest_mode = VOIDmode;
#ifdef ENABLE_CHECKING
lra_reg_info[i].call_p = false;
#endif
if (i >= FIRST_PSEUDO_REGISTER
&& lra_reg_info[i].nrefs != 0)
{
if ((hard_regno = reg_renumber[i]) >= 0)
lra_hard_reg_usage[hard_regno] += lra_reg_info[i].freq;
have_referenced_pseudos = true;
}
}
lra_free_copies ();
/* Under some circumstances, we can have functions without pseudo
registers. For such functions, lra_live_max_point will be 0,
see e.g. PR55604, and there's nothing more to do for us here. */
if (! have_referenced_pseudos)
{
timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
return;
}
pseudos_live = sparseset_alloc (max_regno);
pseudos_live_through_calls = sparseset_alloc (max_regno);
pseudos_live_through_setjumps = sparseset_alloc (max_regno);
start_living = sparseset_alloc (max_regno);
start_dying = sparseset_alloc (max_regno);
dead_set = sparseset_alloc (max_regno);
unused_set = sparseset_alloc (max_regno);
curr_point = 0;
point_freq_vec.create (get_max_uid () * 2);
lra_point_freq = point_freq_vec.address ();
int *post_order_rev_cfg = XNEWVEC (int, last_basic_block_for_fn (cfun));
int n_blocks_inverted = inverted_post_order_compute (post_order_rev_cfg);
lra_assert (n_blocks_inverted == n_basic_blocks_for_fn (cfun));
for (i = n_blocks_inverted - 1; i >= 0; --i)
{
bb = BASIC_BLOCK_FOR_FN (cfun, post_order_rev_cfg[i]);
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun))
continue;
process_bb_lives (bb, curr_point);
}
free (post_order_rev_cfg);
lra_live_max_point = curr_point;
gcc_checking_assert (lra_live_max_point > 0);
if (lra_dump_file != NULL)
print_live_ranges (lra_dump_file);
/* Clean up. */
sparseset_free (unused_set);
sparseset_free (dead_set);
sparseset_free (start_dying);
sparseset_free (start_living);
sparseset_free (pseudos_live_through_calls);
sparseset_free (pseudos_live_through_setjumps);
sparseset_free (pseudos_live);
compress_live_ranges ();
timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
}
/* Finish all live ranges. */
void
lra_clear_live_ranges (void)
{
int i;
for (i = 0; i < max_reg_num (); i++)
free_live_range_list (lra_reg_info[i].live_ranges);
point_freq_vec.release ();
}
/* Initialize live ranges data once per function. */
void
lra_live_ranges_init (void)
{
live_range_pool = create_alloc_pool ("live ranges",
sizeof (struct lra_live_range), 100);
}
/* Finish live ranges data once per function. */
void
lra_live_ranges_finish (void)
{
free_alloc_pool (live_range_pool);
}
|