/* Implementation of the MINVAL intrinsic Copyright 2002 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfor). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with libgfor; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include #include "libgfortran.h" void __minval_r4 (gfc_array_r4 * retarray, gfc_array_r4 *array, index_type *pdim) { index_type count[GFC_MAX_DIMENSIONS - 1]; index_type extent[GFC_MAX_DIMENSIONS - 1]; index_type sstride[GFC_MAX_DIMENSIONS - 1]; index_type dstride[GFC_MAX_DIMENSIONS - 1]; GFC_REAL_4 *base; GFC_REAL_4 *dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; assert (rank == GFC_DESCRIPTOR_RANK (retarray)); if (array->dim[0].stride == 0) array->dim[0].stride = 1; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; delta = array->dim[dim].stride; for (n = 0; n < dim; n++) { sstride[n] = array->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; } for (n = dim; n < rank; n++) { sstride[n] = array->dim[n + 1].stride; extent[n] = array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = retarray->dim[n].stride; if (extent[n] <= 0) len = 0; } base = array->data; dest = retarray->data; while (base) { GFC_REAL_4 *src; GFC_REAL_4 result; src = base; { result = GFC_REAL_4_HUGE; if (len <= 0) *dest = GFC_REAL_4_HUGE; else { for (n = 0; n < len; n++, src += delta) { if (*src < result) result = *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so proabably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } void __mminval_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array, index_type *pdim, gfc_array_l4 * mask) { index_type count[GFC_MAX_DIMENSIONS - 1]; index_type extent[GFC_MAX_DIMENSIONS - 1]; index_type sstride[GFC_MAX_DIMENSIONS - 1]; index_type dstride[GFC_MAX_DIMENSIONS - 1]; index_type mstride[GFC_MAX_DIMENSIONS - 1]; GFC_REAL_4 *dest; GFC_REAL_4 *base; GFC_LOGICAL_4 *mbase; int rank; int dim; index_type n; index_type len; index_type delta; index_type mdelta; dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; assert (rank == GFC_DESCRIPTOR_RANK (retarray)); if (array->dim[0].stride == 0) array->dim[0].stride = 1; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; if (len <= 0) return; delta = array->dim[dim].stride; mdelta = mask->dim[dim].stride; for (n = 0; n < dim; n++) { sstride[n] = array->dim[n].stride; mstride[n] = mask->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; } for (n = dim; n < rank; n++) { sstride[n] = array->dim[n + 1].stride; mstride[n] = mask->dim[n + 1].stride; extent[n] = array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = retarray->dim[n].stride; if (extent[n] <= 0) return; } dest = retarray->data; base = array->data; mbase = mask->data; if (GFC_DESCRIPTOR_SIZE (mask) != 4) { /* This allows the same loop to be used for all logical types. */ assert (GFC_DESCRIPTOR_SIZE (mask) == 8); for (n = 0; n < rank; n++) mstride[n] <<= 1; mdelta <<= 1; mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); } while (base) { GFC_REAL_4 *src; GFC_LOGICAL_4 *msrc; GFC_REAL_4 result; src = base; msrc = mbase; { result = GFC_REAL_4_HUGE; if (len <= 0) *dest = GFC_REAL_4_HUGE; else { for (n = 0; n < len; n++, src += delta, msrc += mdelta) { if (*msrc && *src < result) result = *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so proabably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; dest += dstride[n]; } } } }