/* ET-trees datastructure implementation. Contributed by Pavel Nejedly Copyright (C) 2002 Free Software Foundation, Inc. This file is part of the libiberty library. Libiberty is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Libiberty is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with libiberty; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The ET-forest structure is described in: D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. G'omput. System Sci., 26(3):362 381, 1983. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "et-forest.h" struct et_forest_occurrence; typedef struct et_forest_occurrence* et_forest_occurrence_t; /* The ET-forest type. */ struct et_forest { /* Linked list of nodes is used to destroy the structure. */ int nnodes; }; /* Single occurrence of node in ET-forest. A single node may have multiple occurrences. */ struct et_forest_occurrence { /* Parent in the splay-tree. */ et_forest_occurrence_t parent; /* Children in the splay-tree. */ et_forest_occurrence_t left, right; /* Counts of vertices in the two splay-subtrees. */ int count_left, count_right; /* Next occurrence of this node in the sequence. */ et_forest_occurrence_t next; /* The node, which this occurrence is of. */ et_forest_node_t node; }; /* ET-forest node. */ struct et_forest_node { et_forest_t forest; void *value; /* First and last occurrence of this node in the sequence. */ et_forest_occurrence_t first, last; }; static et_forest_occurrence_t splay PARAMS ((et_forest_occurrence_t)); static void remove_all_occurrences PARAMS ((et_forest_node_t)); static inline et_forest_occurrence_t find_leftmost_node PARAMS ((et_forest_occurrence_t)); static inline et_forest_occurrence_t find_rightmost_node PARAMS ((et_forest_occurrence_t)); static int calculate_value PARAMS ((et_forest_occurrence_t)); /* Return leftmost node present in the tree roted by OCC. */ static inline et_forest_occurrence_t find_leftmost_node (occ) et_forest_occurrence_t occ; { while (occ->left) occ = occ->left; return occ; } /* Return rightmost node present in the tree roted by OCC. */ static inline et_forest_occurrence_t find_rightmost_node (occ) et_forest_occurrence_t occ; { while (occ->right) occ = occ->right; return occ; } /* Operation splay for splay tree structure representing ocuurences. */ static et_forest_occurrence_t splay (node) et_forest_occurrence_t node; { et_forest_occurrence_t parent; et_forest_occurrence_t grandparent; while (1) { parent = node->parent; if (! parent) return node; /* node == root. */ grandparent = parent->parent; if (! grandparent) break; /* Now there are four possible combinations: */ if (node == parent->left) { if (parent == grandparent->left) { et_forest_occurrence_t node1, node2; int count1, count2; node1 = node->right; count1 = node->count_right; node2 = parent->right; count2 = parent->count_right; grandparent->left = node2; grandparent->count_left = count2; if (node2) node2->parent = grandparent; parent->left = node1; parent->count_left = count1; if (node1) node1->parent = parent; parent->right = grandparent; parent->count_right = count2 + grandparent->count_right + 1; node->right = parent; node->count_right = count1 + parent->count_right + 1; node->parent = grandparent->parent; parent->parent = node; grandparent->parent = parent; if (node->parent) { if (node->parent->left == grandparent) node->parent->left = node; else node->parent->right = node; } } else { /* parent == grandparent->right && node == parent->left*/ et_forest_occurrence_t node1, node2; int count1, count2; node1 = node->left; count1 = node->count_left; node2 = node->right; count2 = node->count_right; grandparent->right = node1; grandparent->count_right = count1; if (node1) node1->parent = grandparent; parent->left = node2; parent->count_left = count2; if (node2) node2->parent = parent; node->left = grandparent; node->count_left = grandparent->count_left + count1 + 1; node->right = parent; node->count_right = parent->count_right + count2 + 1; node->parent = grandparent->parent; parent->parent = node; grandparent->parent = node; if (node->parent) { if (node->parent->left == grandparent) node->parent->left = node; else node->parent->right = node; } } } else { /* node == parent->right. */ if (parent == grandparent->left) { et_forest_occurrence_t node1, node2; int count1, count2; node1 = node->left; count1 = node->count_left; node2 = node->right; count2 = node->count_right; parent->right = node1; parent->count_right = count1; if (node1) node1->parent = parent; grandparent->left = node2; grandparent->count_left = count2; if (node2) node2->parent = grandparent; node->left = parent; node->count_left = parent->count_left + count1 + 1; node->right = grandparent; node->count_right = grandparent->count_right + count2 + 1; node->parent = grandparent->parent; parent->parent = node; grandparent->parent = node; if (node->parent) { if (node->parent->left == grandparent) node->parent->left = node; else node->parent->right = node; } } else { /* parent == grandparent->right && node == parent->right*/ et_forest_occurrence_t node1, node2; int count1, count2; node1 = node->left; count1 = node->count_left; node2 = parent->left; count2 = parent->count_left; grandparent->right = node2; grandparent->count_right = count2; if (node2) node2->parent = grandparent; parent->right = node1; parent->count_right = count1; if (node1) node1->parent = parent; parent->left = grandparent; parent->count_left = count2 + grandparent->count_left + 1; node->left = parent; node->count_left = count1 + parent->count_left + 1; node->parent = grandparent->parent; parent->parent = node; grandparent->parent = parent; if (node->parent) { if (node->parent->left == grandparent) node->parent->left = node; else node->parent->right = node; } } } } /* parent == root. */ /* There are two possible combinations: */ if (node == parent->left) { et_forest_occurrence_t node1; int count1; node1 = node->right; count1 = node->count_right; parent->left = node1; parent->count_left = count1; if (node1) node1->parent = parent; node->right = parent; node->count_right = parent->count_right + 1 + count1; node->parent = parent->parent; /* the same as = 0; */ parent->parent = node; if (node->parent) { if (node->parent->left == parent) node->parent->left = node; else node->parent->right = node; } } else { /* node == parent->right. */ et_forest_occurrence_t node1; int count1; node1 = node->left; count1 = node->count_left; parent->right = node1; parent->count_right = count1; if (node1) node1->parent = parent; node->left = parent; node->count_left = parent->count_left + 1 + count1; node->parent = parent->parent; /* the same as = 0; */ parent->parent = node; if (node->parent) { if (node->parent->left == parent) node->parent->left = node; else node->parent->right = node; } } return node; } /* Remove all occurences of the given node before destroying the node. */ static void remove_all_occurrences (forest_node) et_forest_node_t forest_node; { et_forest_occurrence_t first = forest_node->first; et_forest_occurrence_t last = forest_node->last; et_forest_occurrence_t node; splay (first); if (first->left) first->left->parent = 0; if (first->right) first->right->parent = 0; if (last != first) { splay (last); if (last->left) last->left->parent = 0; if (last->right) last->right->parent = 0; } if (last->right && first->left) /* actually, first->left would suffice. */ { /* Need to join them. */ et_forest_occurrence_t prev_node, next_node; prev_node = splay (find_rightmost_node (first->left)); next_node = splay (find_leftmost_node (last->right)); /* prev_node and next_node are consecutive occurencies of the same node. */ if (prev_node->next != next_node) abort (); prev_node->right = next_node->right; prev_node->count_right = next_node->count_right; prev_node->next = next_node->next; if (prev_node->right) prev_node->right->parent = prev_node; if (prev_node->node->last == next_node) prev_node->node->last = prev_node; free (next_node); } if (first != last) { node = first->next; while (node != last) { et_forest_occurrence_t next_node; splay (node); if (node->left) node->left->parent = 0; if (node->right) node->right->parent = 0; next_node = node->next; free (node); node = next_node; } } free (first); if (first != last) free (last); } /* Calculate ET value of the given node. */ static inline int calculate_value (node) et_forest_occurrence_t node; { int value = node->count_left; while (node->parent) { if (node == node->parent->right) value += node->parent->count_left + 1; node = node->parent; } return value; } /* Create ET-forest structure. */ et_forest_t et_forest_create () { et_forest_t forest = xmalloc (sizeof (struct et_forest)); forest->nnodes = 0; return forest; } /* Deallocate the structure. */ void et_forest_delete (forest) et_forest_t forest; { if (forest->nnodes) abort (); free (forest); } /* Create new node with VALUE and return the edge. Return NULL when memory allocation failed. */ et_forest_node_t et_forest_add_node (forest, value) et_forest_t forest; void *value; { /* Create node with one occurrence. */ et_forest_node_t node; et_forest_occurrence_t occ; node = xmalloc (sizeof (struct et_forest_node)); occ = xmalloc (sizeof (struct et_forest_occurrence)); node->first = node->last = occ; node->value = value; forest->nnodes++; occ->node = node; occ->left = occ->right = occ->parent = 0; occ->next = 0; occ->count_left = occ->count_right = 0; return node; } /* Add new edge to the tree, return 1 if succesfull. 0 indicates that creation of the edge will close the cycle in graph. */ int et_forest_add_edge (forest, parent_node, child_node) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t parent_node; et_forest_node_t child_node; { et_forest_occurrence_t new_occ, parent_occ, child_occ; if (! parent_node || ! child_node) abort (); parent_occ = parent_node->first; child_occ = child_node->first; splay (parent_occ); splay (child_occ); if (parent_occ->parent) return 0; /* Both child and parent are in the same tree. */ if (child_occ->left) abort (); /* child must be root of its containing tree. */ new_occ = xmalloc (sizeof (struct et_forest_occurrence)); new_occ->node = parent_node; new_occ->left = child_occ; new_occ->count_left = child_occ->count_right + 1; /* count_left is 0. */ new_occ->right = parent_occ->right; new_occ->count_right = parent_occ->count_right; new_occ->parent = parent_occ; new_occ->next = parent_occ->next; child_occ->parent = new_occ; parent_occ->right = new_occ; parent_occ->count_right = new_occ->count_left + new_occ->count_right + 1; parent_occ->next = new_occ; if (new_occ->right) new_occ->right->parent = new_occ; if (parent_node->last == parent_occ) parent_node->last = new_occ; return 1; } /* Remove NODE from the tree and all connected edges. */ void et_forest_remove_node (forest, node) et_forest_t forest; et_forest_node_t node; { remove_all_occurrences (node); forest->nnodes--; free (node); } /* Remove edge from the tree, return 1 if sucesfull, 0 indicates nonexisting edge. */ int et_forest_remove_edge (forest, parent_node, child_node) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t parent_node; et_forest_node_t child_node; { et_forest_occurrence_t parent_pre_occ, parent_post_occ; splay (child_node->first); if (! child_node->first->left) return 0; parent_pre_occ = find_rightmost_node (child_node->first->left); if (parent_pre_occ->node != parent_node) abort (); splay (parent_pre_occ); parent_pre_occ->right->parent = 0; parent_post_occ = parent_pre_occ->next; splay (parent_post_occ); parent_post_occ->left->parent = 0; parent_pre_occ->right = parent_post_occ->right; parent_pre_occ->count_right = parent_post_occ->count_right; if (parent_post_occ->right) parent_post_occ->right->parent = parent_pre_occ; parent_pre_occ->next = parent_post_occ->next; if (parent_post_occ == parent_node->last) parent_node->last = parent_pre_occ; free (parent_post_occ); return 1; } /* Return the parent of the NODE if any, NULL otherwise. */ et_forest_node_t et_forest_parent (forest, node) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t node; { splay (node->first); if (node->first->left) return find_rightmost_node (node->first->left)->node; else return 0; } /* Return nearest common ancestor of NODE1 and NODE2. Return NULL of they are in different trees. */ et_forest_node_t et_forest_common_ancestor (forest, node1, node2) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t node1; et_forest_node_t node2; { int value1, value2, max_value; et_forest_node_t ancestor; if (node1 == node2) return node1; if (! node1 || ! node2) abort (); splay (node1->first); splay (node2->first); if (! node1->first->parent) /* The two vertices are in different trees. */ return 0; value2 = calculate_value (node2->first); value1 = calculate_value (node1->first); if (value1 < value2) { ancestor = node1; max_value = value2; } else { ancestor = node2; max_value = value1; } while (calculate_value (ancestor->last) < max_value) { /* Find parent node. */ splay (ancestor->first); ancestor = find_rightmost_node (ancestor->first->left) ->node; } return ancestor; } /* Return the value pointer of node set during it's creation. */ void * et_forest_node_value (forest, node) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t node; { /* Alloc threading NULL as a special node of the forest. */ if (!node) return NULL; return node->value; } /* Find all sons of NODE and store them into ARRAY allocated by the caller. Return number of nodes found. */ int et_forest_enumerate_sons (forest, node, array) et_forest_t forest ATTRIBUTE_UNUSED; et_forest_node_t node; et_forest_node_t *array; { int n = 0; et_forest_occurrence_t occ = node->first, stop = node->last, occ1; /* Parent is the rightmost node of the left successor. Look for all occurences having no right succesor and lookup the sons. */ while (occ != stop) { splay (occ); if (occ->right) { occ1 = find_leftmost_node (occ->right); if (occ1->node->first == occ1) array[n++] = occ1->node; } occ = occ->next; } return n; }