/* High-level libcrypt interfaces. Copyright 2007-2017 Thorsten Kukuk and Zack Weinberg Copyright 2018-2021 Björn Esser This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include "crypt-port.h" #include #include /* The internal storage area within struct crypt_data is used as follows. We don't know what alignment the algorithm modules will need for their scratch data, so give it the maximum natural alignment. Note that the C11 alignas() specifier can't be applied directly to a struct type, but it can be applied to the first field of a struct, which effectively forces alignment of the entire struct, since the first field must always have offset 0. */ struct crypt_internal { char alignas (alignof (max_align_t)) alg_specific[ALG_SPECIFIC_SIZE]; }; static_assert(sizeof (struct crypt_internal) + alignof (struct crypt_internal) <= CRYPT_DATA_INTERNAL_SIZE, "crypt_data.internal is too small for crypt_internal"); /* struct crypt_data is allocated by application code and contains only char-typed fields, so its 'internal' field may not be sufficiently aligned. */ static inline struct crypt_internal * get_internal (struct crypt_data *data) { uintptr_t internalp = (uintptr_t) data->internal; const uintptr_t align = alignof (struct crypt_internal); internalp = (internalp + align - 1) & ~(align - 1); return (struct crypt_internal *)internalp; } typedef void (*crypt_fn) (const char *phrase, size_t phr_size, const char *setting, size_t set_size, uint8_t *output, size_t out_size, void *scratch, size_t scr_size); typedef void (*gensalt_fn) (unsigned long count, const uint8_t *rbytes, size_t nrbytes, uint8_t *output, size_t output_size); struct hashfn { const char *prefix; size_t plen; crypt_fn crypt; gensalt_fn gensalt; /* The type of this field is unsigned char to ensure that it cannot be set larger than the size of an internal buffer in crypt_gensalt_rn. */ unsigned char nrbytes; unsigned char is_strong; }; static const struct hashfn hash_algorithms[] = { HASH_ALGORITHM_TABLE_ENTRIES }; #if INCLUDE_descrypt || INCLUDE_bigcrypt static int is_des_salt_char (char c) { return ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '.' || c == '/'); } #endif static const struct hashfn * get_hashfn (const char *setting) { const struct hashfn *h; for (h = hash_algorithms; h->prefix; h++) { if (h->plen > 0) { if (!strncmp (setting, h->prefix, h->plen)) return h; } #if INCLUDE_descrypt || INCLUDE_bigcrypt else { if (setting[0] == '\0' || (is_des_salt_char (setting[0]) && is_des_salt_char (setting[1]))) return h; } #endif } return 0; } /* Check a setting string for generic validity, according to the rule stated in crypt(5): "Hashed passphrases are always entirely printable ASCII, and do not contain any whitespace or the characters ':', ';', '*', '!', or '\\'. (These characters are used as delimiters and special markers in the passwd(5) and shadow(5) files.)" There is a precautionary case for rejecting additional ASCII punctuation, particularly other characters often given syntactic significance in configuration files, such as " ' and #. However, this check didn't used to exist at all, and some of the hash function implementations don't restrict the set of byte values they they will accept in their setting strings (particularly in the salt component) either. Thus, to maintain compatibility with the widest variety of existing hashed passphrases, we are only enforcing the documented rule for now. See for additional discussion. */ static int check_badsalt_chars (const char *setting) { size_t i; for (i = 0; setting[i] != '\0'; i++) if ((unsigned char) setting[i] <= 0x20 || (unsigned char) setting[i] >= 0x7f) return 1; return strcspn (setting, "!*:;\\") != i; } static void do_crypt (const char *phrase, const char *setting, struct crypt_data *data) { if (!phrase || !setting) { errno = EINVAL; return; } /* Do these strlen() calls before reading prefixes of either 'phrase' or 'setting', so we get a predictable crash if they are not valid strings. */ size_t phr_size = strlen (phrase); size_t set_size = strlen (setting); if (phr_size >= CRYPT_MAX_PASSPHRASE_SIZE) { errno = ERANGE; return; } if (check_badsalt_chars (setting)) { errno = EINVAL; return; } const struct hashfn *h = get_hashfn (setting); if (!h) { /* Unrecognized hash algorithm */ errno = EINVAL; return; } struct crypt_internal *cint = get_internal (data); h->crypt (phrase, phr_size, setting, set_size, (unsigned char *)data->output, sizeof data->output, cint->alg_specific, sizeof cint->alg_specific); explicit_bzero (data->internal, sizeof data->internal); } #if INCLUDE_crypt_rn char * crypt_rn (const char *phrase, const char *setting, void *data, int size) { make_failure_token (setting, data, MIN (size, CRYPT_OUTPUT_SIZE)); if (size < 0 || (size_t)size < sizeof (struct crypt_data)) { errno = ERANGE; return 0; } struct crypt_data *p = data; do_crypt (phrase, setting, p); return p->output[0] == '*' ? 0 : p->output; } SYMVER_crypt_rn; #endif #if INCLUDE_crypt_ra char * crypt_ra (const char *phrase, const char *setting, void **data, int *size) { if (!*data) { *data = malloc (sizeof (struct crypt_data)); if (!*data) return 0; *size = sizeof (struct crypt_data); } if (*size < 0 || (size_t)*size < sizeof (struct crypt_data)) { void *rdata = realloc (*data, sizeof (struct crypt_data)); if (!rdata) return 0; *data = rdata; *size = sizeof (struct crypt_data); } struct crypt_data *p = *data; make_failure_token (setting, p->output, sizeof p->output); do_crypt (phrase, setting, p); return p->output[0] == '*' ? 0 : p->output; } SYMVER_crypt_ra; #endif #if INCLUDE_crypt_r char * crypt_r (const char *phrase, const char *setting, struct crypt_data *data) { make_failure_token (setting, data->output, sizeof data->output); do_crypt (phrase, setting, data); #if ENABLE_FAILURE_TOKENS return data->output; #else return data->output[0] == '*' ? 0 : data->output; #endif } SYMVER_crypt_r; #endif /* For code compatibility with older versions (v3.1.1 and earlier). */ #if INCLUDE_crypt_r && INCLUDE_xcrypt_r strong_alias (crypt_r, xcrypt_r); SYMVER_xcrypt_r; #endif #if INCLUDE_crypt_gensalt_rn char * crypt_gensalt_rn (const char *prefix, unsigned long count, const char *rbytes, int nrbytes, char *output, int output_size) { make_failure_token ("", output, output_size); /* Individual gensalt functions will check for adequate space for their own breed of setting, but the shortest possible one is three bytes (DES two-character salt + NUL terminator) and we also want to rule out negative numbers early. */ if (output_size < 3) { errno = ERANGE; return 0; } /* If the prefix is 0, that means to use the current best default. Note that this is different from the behavior when the prefix is "", which selects DES. HASH_ALGORITHM_DEFAULT is not defined when the current default algorithm was disabled at configure time. */ if (!prefix) { #if defined HASH_ALGORITHM_DEFAULT prefix = HASH_ALGORITHM_DEFAULT; #else errno = EINVAL; return 0; #endif } const struct hashfn *h = get_hashfn (prefix); if (!h) { errno = EINVAL; return 0; } char internal_rbytes[UCHAR_MAX]; /* typeof (internal_nrbytes) == typeof (h->nrbytes). */ unsigned char internal_nrbytes = 0; /* If rbytes is 0, read random bytes from the operating system if possible. */ if (!rbytes) { if (!get_random_bytes (internal_rbytes, h->nrbytes)) return 0; rbytes = internal_rbytes; nrbytes = internal_nrbytes = h->nrbytes; } h->gensalt (count, (const unsigned char *)rbytes, (size_t)nrbytes, (unsigned char *)output, (size_t)output_size); if (internal_nrbytes) explicit_bzero (internal_rbytes, internal_nrbytes); return output[0] == '*' ? 0 : output; } SYMVER_crypt_gensalt_rn; #endif /* For code compatibility with older versions (v3.1.1 and earlier). */ #if INCLUDE_crypt_gensalt_rn && INCLUDE_crypt_gensalt_r strong_alias (crypt_gensalt_rn, crypt_gensalt_r); SYMVER_crypt_gensalt_r; #endif /* For code compatibility with older versions (v3.1.1 and earlier). */ #if INCLUDE_crypt_gensalt_rn && INCLUDE_xcrypt_gensalt_r strong_alias (crypt_gensalt_rn, xcrypt_gensalt_r); SYMVER_xcrypt_gensalt_r; #endif #if INCLUDE_crypt_gensalt_ra char * crypt_gensalt_ra (const char *prefix, unsigned long count, const char *rbytes, int nrbytes) { char *output = malloc (CRYPT_GENSALT_OUTPUT_SIZE); if (!output) return 0; char *result = crypt_gensalt_rn (prefix, count, rbytes, nrbytes, output, CRYPT_GENSALT_OUTPUT_SIZE); if (result == 0) free (output); return result; } SYMVER_crypt_gensalt_ra; #endif #if INCLUDE_crypt_checksalt static_assert(CRYPT_SALT_OK == 0, "CRYPT_SALT_OK does not equal zero"); int crypt_checksalt (const char *setting) { int retval = CRYPT_SALT_INVALID; if (!setting || /* NULL string */ setting[0] == '\0' || /* empty passphrase */ check_badsalt_chars (setting)) /* bad salt chars */ goto end; const struct hashfn *h = get_hashfn (setting); if (h) { retval = CRYPT_SALT_OK; if (h->is_strong == 0) { retval = CRYPT_SALT_METHOD_LEGACY; goto end; } } end: return retval; } SYMVER_crypt_checksalt; #endif #if INCLUDE_crypt_preferred_method const char * crypt_preferred_method (void) { #if defined HASH_ALGORITHM_DEFAULT return HASH_ALGORITHM_DEFAULT; #else return NULL; #endif } SYMVER_crypt_preferred_method; #endif