/*- * Copyright 2005-2016 Colin Percival * Copyright 2016-2018 Alexander Peslyak * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "crypt-port.h" #if INCLUDE_gost_yescrypt || INCLUDE_yescrypt || INCLUDE_scrypt || INCLUDE_sha256crypt #include "alg-sha256.h" #include "byteorder.h" #ifdef __ICC /* Miscompile with icc 14.0.0 (at least), so don't use restrict there */ #define restrict #elif __STDC_VERSION__ >= 199901L /* Have restrict */ #elif defined(__GNUC__) #define restrict __restrict #else #define restrict #endif /* SHA256 round constants. */ static const uint32_t Krnd[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ h += S1(e) + Ch(e, f, g) + k; \ d += h; \ h += S0(a) + Maj(a, b, c); /* Adjusted round function for rotating state */ #define RNDr(S, W, i, ii) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i + ii] + Krnd[i + ii]) /* Message schedule computation */ #define MSCH(W, ii, i) \ W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii] /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ static void SHA256_Transform(uint32_t state[static restrict 8], const uint8_t block[static restrict 64], uint32_t W[static restrict 64], uint32_t S[static restrict 8]) { int i; /* 1. Prepare the first part of the message schedule W. */ be32dec_vect(W, block, 16); /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ for (i = 0; i <= 48; i += 16) { RNDr(S, W, 0, i); RNDr(S, W, 1, i); RNDr(S, W, 2, i); RNDr(S, W, 3, i); RNDr(S, W, 4, i); RNDr(S, W, 5, i); RNDr(S, W, 6, i); RNDr(S, W, 7, i); RNDr(S, W, 8, i); RNDr(S, W, 9, i); RNDr(S, W, 10, i); RNDr(S, W, 11, i); RNDr(S, W, 12, i); RNDr(S, W, 13, i); RNDr(S, W, 14, i); RNDr(S, W, 15, i); if (i == 48) break; MSCH(W, 0, i); MSCH(W, 1, i); MSCH(W, 2, i); MSCH(W, 3, i); MSCH(W, 4, i); MSCH(W, 5, i); MSCH(W, 6, i); MSCH(W, 7, i); MSCH(W, 8, i); MSCH(W, 9, i); MSCH(W, 10, i); MSCH(W, 11, i); MSCH(W, 12, i); MSCH(W, 13, i); MSCH(W, 14, i); MSCH(W, 15, i); } /* 4. Mix local working variables into global state. */ state[0] += S[0]; state[1] += S[1]; state[2] += S[2]; state[3] += S[3]; state[4] += S[4]; state[5] += S[5]; state[6] += S[6]; state[7] += S[7]; } static const uint8_t PAD[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* Add padding and terminating bit-count. */ static void SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72]) { size_t r; /* Figure out how many bytes we have buffered. */ r = (ctx->count >> 3) & 0x3f; /* Pad to 56 mod 64, transforming if we finish a block en route. */ if (r < 56) { /* Pad to 56 mod 64. */ memcpy(&ctx->buf[r], PAD, 56 - r); } else { /* Finish the current block and mix. */ memcpy(&ctx->buf[r], PAD, 64 - r); SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]); /* The start of the final block is all zeroes. */ memset(&ctx->buf[0], 0, 56); } /* Add the terminating bit-count. */ be64enc(&ctx->buf[56], ctx->count); /* Mix in the final block. */ SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]); } /* Magic initialization constants. */ static const uint32_t initial_state[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; /** * SHA256_Init(ctx): * Initialize the SHA256 context ${ctx}. */ void SHA256_Init(SHA256_CTX * ctx) { /* Zero bits processed so far. */ ctx->count = 0; /* Initialize state. */ memcpy(ctx->state, initial_state, sizeof(initial_state)); } /** * SHA256_Update(ctx, in, len): * Input ${len} bytes from ${in} into the SHA256 context ${ctx}. */ static void _SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len, uint32_t tmp32[static restrict 72]) { uint32_t r; const uint8_t * src = in; /* Return immediately if we have nothing to do. */ if (len == 0) return; /* Number of bytes left in the buffer from previous updates. */ r = (ctx->count >> 3) & 0x3f; /* Update number of bits. */ ctx->count += (uint64_t)(len) << 3; /* Handle the case where we don't need to perform any transforms. */ if (len < 64 - r) { memcpy(&ctx->buf[r], src, len); return; } /* Finish the current block. */ memcpy(&ctx->buf[r], src, 64 - r); SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]); src += 64 - r; len -= 64 - r; /* Perform complete blocks. */ while (len >= 64) { SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]); src += 64; len -= 64; } /* Copy left over data into buffer. */ memcpy(ctx->buf, src, len); } /* Wrapper function for intermediate-values sanitization. */ void SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len) { uint32_t tmp32[72]; /* Call the real function. */ _SHA256_Update(ctx, in, len, tmp32); /* Clean the stack. */ explicit_bzero(tmp32, 288); } /** * SHA256_Final(digest, ctx): * Output the SHA256 hash of the data input to the context ${ctx} into the * buffer ${digest}. */ static void _SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx, uint32_t tmp32[static restrict 72]) { /* Add padding. */ SHA256_Pad(ctx, tmp32); /* Write the hash. */ be32enc_vect(digest, ctx->state, 8); } /* Wrapper function for intermediate-values sanitization. */ void SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx) { uint32_t tmp32[72]; /* Call the real function. */ _SHA256_Final(digest, ctx, tmp32); /* Clear the context state. */ explicit_bzero(ctx, sizeof(SHA256_CTX)); /* Clean the stack. */ explicit_bzero(tmp32, 288); } /** * SHA256_Buf(in, len, digest): * Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}. */ void SHA256_Buf(const void * in, size_t len, uint8_t digest[32]) { SHA256_CTX ctx; uint32_t tmp32[72]; SHA256_Init(&ctx); _SHA256_Update(&ctx, in, len, tmp32); _SHA256_Final(digest, &ctx, tmp32); /* Clean the stack. */ explicit_bzero(&ctx, sizeof(SHA256_CTX)); explicit_bzero(tmp32, 288); } #endif /* INCLUDE_gost_yescrypt || INCLUDE_yescrypt || INCLUDE_scrypt || INCLUDE_sha256crypt */ #if INCLUDE_gost_yescrypt || INCLUDE_yescrypt || INCLUDE_scrypt /** * HMAC_SHA256_Init(ctx, K, Klen): * Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from * ${K}. */ static void _HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen, uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64], uint8_t khash[static restrict 32]) { const uint8_t * K = _K; size_t i; /* If Klen > 64, the key is really SHA256(K). */ if (Klen > 64) { SHA256_Init(&ctx->ictx); _SHA256_Update(&ctx->ictx, K, Klen, tmp32); _SHA256_Final(khash, &ctx->ictx, tmp32); K = khash; Klen = 32; } /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ SHA256_Init(&ctx->ictx); memset(pad, 0x36, 64); for (i = 0; i < Klen; i++) pad[i] ^= K[i]; _SHA256_Update(&ctx->ictx, pad, 64, tmp32); /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ SHA256_Init(&ctx->octx); memset(pad, 0x5c, 64); for (i = 0; i < Klen; i++) pad[i] ^= K[i]; _SHA256_Update(&ctx->octx, pad, 64, tmp32); } /* Wrapper function for intermediate-values sanitization. */ void HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) { uint32_t tmp32[72]; uint8_t pad[64]; uint8_t khash[32]; /* Call the real function. */ _HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash); /* Clean the stack. */ explicit_bzero(tmp32, 288); explicit_bzero(khash, 32); explicit_bzero(pad, 64); } /** * HMAC_SHA256_Update(ctx, in, len): * Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}. */ static void _HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len, uint32_t tmp32[static restrict 72]) { /* Feed data to the inner SHA256 operation. */ _SHA256_Update(&ctx->ictx, in, len, tmp32); } /* Wrapper function for intermediate-values sanitization. */ void HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len) { uint32_t tmp32[72]; /* Call the real function. */ _HMAC_SHA256_Update(ctx, in, len, tmp32); /* Clean the stack. */ explicit_bzero(tmp32, 288); } /** * HMAC_SHA256_Final(digest, ctx): * Output the HMAC-SHA256 of the data input to the context ${ctx} into the * buffer ${digest}. */ static void _HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx, uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32]) { /* Finish the inner SHA256 operation. */ _SHA256_Final(ihash, &ctx->ictx, tmp32); /* Feed the inner hash to the outer SHA256 operation. */ _SHA256_Update(&ctx->octx, ihash, 32, tmp32); /* Finish the outer SHA256 operation. */ _SHA256_Final(digest, &ctx->octx, tmp32); } /* Wrapper function for intermediate-values sanitization. */ void HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx) { uint32_t tmp32[72]; uint8_t ihash[32]; /* Call the real function. */ _HMAC_SHA256_Final(digest, ctx, tmp32, ihash); /* Clean the stack. */ explicit_bzero(tmp32, 288); explicit_bzero(ihash, 32); } /** * HMAC_SHA256_Buf(K, Klen, in, len, digest): * Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of * length ${Klen}, and write the result to ${digest}. */ void HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len, uint8_t digest[32]) { HMAC_SHA256_CTX ctx; uint32_t tmp32[72]; uint8_t tmp8[96]; _HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]); _HMAC_SHA256_Update(&ctx, in, len, tmp32); _HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]); /* Clean the stack. */ explicit_bzero(&ctx, sizeof(HMAC_SHA256_CTX)); explicit_bzero(tmp32, 288); explicit_bzero(tmp8, 96); } /* Add padding and terminating bit-count, but don't invoke Transform yet. */ static int SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8], uint32_t tmp32[static restrict 72]) { uint32_t r; r = (ctx->count >> 3) & 0x3f; if (r >= 56) return -1; /* * Convert length to a vector of bytes -- we do this now rather * than later because the length will change after we pad. */ be64enc(len, ctx->count); /* Add 1--56 bytes so that the resulting length is 56 mod 64. */ _SHA256_Update(ctx, PAD, 56 - r, tmp32); /* Add the terminating bit-count. */ ctx->buf[63] = len[7]; _SHA256_Update(ctx, len, 7, tmp32); return 0; } /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ void PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) { HMAC_SHA256_CTX Phctx, PShctx, hctx; uint32_t tmp32[72]; union { uint8_t tmp8[96]; uint32_t state[8]; } u; size_t i; uint8_t ivec[4]; uint8_t U[32]; uint8_t T[32]; uint64_t j; int k; size_t clen; /* Sanity-check. */ assert(dkLen <= 32 * (size_t)(UINT32_MAX)); if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) { uint32_t oldcount; uint8_t * ivecp; /* Compute HMAC state after processing P and S. */ _HMAC_SHA256_Init(&hctx, passwd, passwdlen, tmp32, &u.tmp8[0], &u.tmp8[64]); _HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32); /* Prepare ictx padding. */ oldcount = hctx.ictx.count & (0x3f << 3); _HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32); if ((hctx.ictx.count & (0x3f << 3)) < oldcount || SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32)) goto generic; /* Can't happen due to saltlen check */ ivecp = hctx.ictx.buf + (oldcount >> 3); /* Prepare octx padding. */ hctx.octx.count += 32 << 3; SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32); /* Iterate through the blocks. */ for (i = 0; i * 32 < dkLen; i++) { /* Generate INT(i + 1). */ be32enc(ivecp, (uint32_t)(i + 1)); /* Compute U_1 = PRF(P, S || INT(i)). */ memcpy(u.state, hctx.ictx.state, sizeof(u.state)); SHA256_Transform(u.state, hctx.ictx.buf, &tmp32[0], &tmp32[64]); be32enc_vect(hctx.octx.buf, u.state, 8); memcpy(u.state, hctx.octx.state, sizeof(u.state)); SHA256_Transform(u.state, hctx.octx.buf, &tmp32[0], &tmp32[64]); be32enc_vect(&buf[i * 32], u.state, 8); } goto cleanup; } generic: /* Compute HMAC state after processing P. */ _HMAC_SHA256_Init(&Phctx, passwd, passwdlen, tmp32, &u.tmp8[0], &u.tmp8[64]); /* Compute HMAC state after processing P and S. */ memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX)); _HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32); /* Iterate through the blocks. */ for (i = 0; i * 32 < dkLen; i++) { /* Generate INT(i + 1). */ be32enc(ivec, (uint32_t)(i + 1)); /* Compute U_1 = PRF(P, S || INT(i)). */ memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); _HMAC_SHA256_Update(&hctx, ivec, 4, tmp32); _HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8); if (c > 1) { /* T_i = U_1 ... */ memcpy(U, T, 32); for (j = 2; j <= c; j++) { /* Compute U_j. */ memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX)); _HMAC_SHA256_Update(&hctx, U, 32, tmp32); _HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8); /* ... xor U_j ... */ for (k = 0; k < 32; k++) T[k] ^= U[k]; } } /* Copy as many bytes as necessary into buf. */ clen = dkLen - i * 32; if (clen > 32) clen = 32; memcpy(&buf[i * 32], T, clen); } /* Clean the stack. */ explicit_bzero(&Phctx, sizeof(HMAC_SHA256_CTX)); explicit_bzero(&PShctx, sizeof(HMAC_SHA256_CTX)); explicit_bzero(U, 32); explicit_bzero(T, 32); cleanup: explicit_bzero(&hctx, sizeof(HMAC_SHA256_CTX)); explicit_bzero(tmp32, 288); explicit_bzero(&u, sizeof(u)); } #endif /* INCLUDE_gost_yescrypt || INCLUDE_yescrypt || INCLUDE_scrypt */