/******************************************************************** * * * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. * * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * * * * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 * * by the Xiph.Org Foundation and contributors http://www.xiph.org/ * * * ******************************************************************** function: example encoder application; makes an Ogg Theora/Vorbis file from YUV4MPEG2 and WAV input last mod: $Id: encoder_example.c 16517 2009-08-25 19:48:57Z giles $ ********************************************************************/ #if !defined(_REENTRANT) #define _REENTRANT #endif #if !defined(_GNU_SOURCE) #define _GNU_SOURCE #endif #if !defined(_LARGEFILE_SOURCE) #define _LARGEFILE_SOURCE #endif #if !defined(_LARGEFILE64_SOURCE) #define _LARGEFILE64_SOURCE #endif #if !defined(_FILE_OFFSET_BITS) #define _FILE_OFFSET_BITS 64 #endif #include #if !defined(_WIN32) #include #include #else #include "getopt.h" #endif #include #include #include #include #include "theora/theoraenc.h" #include "vorbis/codec.h" #include "vorbis/vorbisenc.h" #ifdef _WIN32 /*supply missing headers and functions to Win32. going to hell, I know*/ #include #include static double rint(double x) { if (x < 0.0) return (double)(int)(x - 0.5); else return (double)(int)(x + 0.5); } #endif const char *optstring = "b:e:o:a:A:v:V:s:S:f:F:ck:d:z:\1\2\3\4"; struct option options [] = { {"begin-time",required_argument,NULL,'b'}, {"end-time",required_argument,NULL,'e'}, {"output",required_argument,NULL,'o'}, {"audio-rate-target",required_argument,NULL,'A'}, {"video-rate-target",required_argument,NULL,'V'}, {"audio-quality",required_argument,NULL,'a'}, {"video-quality",required_argument,NULL,'v'}, {"aspect-numerator",required_argument,NULL,'s'}, {"aspect-denominator",required_argument,NULL,'S'}, {"framerate-numerator",required_argument,NULL,'f'}, {"framerate-denominator",required_argument,NULL,'F'}, {"vp3-compatible",no_argument,NULL,'c'}, {"speed",required_argument,NULL,'z'}, {"soft-target",no_argument,NULL,'\1'}, {"keyframe-freq",required_argument,NULL,'k'}, {"buf-delay",required_argument,NULL,'d'}, {"two-pass",no_argument,NULL,'\2'}, {"first-pass",required_argument,NULL,'\3'}, {"second-pass",required_argument,NULL,'\4'}, {NULL,0,NULL,0} }; /* You'll go to Hell for using globals. */ FILE *audio=NULL; FILE *video=NULL; int audio_ch=0; int audio_hz=0; float audio_q=.1f; int audio_r=-1; int vp3_compatible=0; int frame_w=0; int frame_h=0; int pic_w=0; int pic_h=0; int pic_x=0; int pic_y=0; int video_fps_n=-1; int video_fps_d=-1; int video_par_n=-1; int video_par_d=-1; char interlace; int src_c_dec_h=2; int src_c_dec_v=2; int dst_c_dec_h=2; int dst_c_dec_v=2; char chroma_type[16]; /*The size of each converted frame buffer.*/ size_t y4m_dst_buf_sz; /*The amount to read directly into the converted frame buffer.*/ size_t y4m_dst_buf_read_sz; /*The size of the auxilliary buffer.*/ size_t y4m_aux_buf_sz; /*The amount to read into the auxilliary buffer.*/ size_t y4m_aux_buf_read_sz; /*The function used to perform chroma conversion.*/ typedef void (*y4m_convert_func)(unsigned char *_dst,unsigned char *_aux); y4m_convert_func y4m_convert=NULL; int video_r=-1; int video_q=-1; ogg_uint32_t keyframe_frequency=0; int buf_delay=-1; long begin_sec=-1; long begin_usec=0; long end_sec=-1; long end_usec=0; static void usage(void){ fprintf(stderr, "Usage: encoder_example [options] [audio_file] video_file\n\n" "Options: \n\n" " -o --output file name for encoded output;\n" " If this option is not given, the\n" " compressed data is sent to stdout.\n\n" " -A --audio-rate-target bitrate target for Vorbis audio;\n" " use -a and not -A if at all possible,\n" " as -a gives higher quality for a given\n" " bitrate.\n\n" " -V --video-rate-target bitrate target for Theora video\n\n" " --soft-target Use a large reservoir and treat the rate\n" " as a soft target; rate control is less\n" " strict but resulting quality is usually\n" " higher/smoother overall. Soft target also\n" " allows an optional -v setting to specify\n" " a minimum allowed quality.\n\n" " --two-pass Compress input using two-pass rate control\n" " This option requires that the input to the\n" " to the encoder is seekable and performs\n" " both passes automatically.\n\n" " --first-pass Perform first-pass of a two-pass rate\n" " controlled encoding, saving pass data to\n" " for a later second pass\n\n" " --second-pass Perform second-pass of a two-pass rate\n" " controlled encoding, reading first-pass\n" " data from . The first pass\n" " data must come from a first encoding pass\n" " using identical input video to work\n" " properly.\n\n" " -a --audio-quality Vorbis quality selector from -1 to 10\n" " (-1 yields smallest files but lowest\n" " fidelity; 10 yields highest fidelity\n" " but large files. '2' is a reasonable\n" " default).\n\n" " -v --video-quality Theora quality selector from 0 to 10\n" " (0 yields smallest files but lowest\n" " video quality. 10 yields highest\n" " fidelity but large files).\n\n" " -s --aspect-numerator Aspect ratio numerator, default is 0\n" " or extracted from YUV input file\n" " -S --aspect-denominator Aspect ratio denominator, default is 0\n" " or extracted from YUV input file\n" " -f --framerate-numerator Frame rate numerator, can be extracted\n" " from YUV input file. ex: 30000000\n" " -F --framerate-denominator Frame rate denominator, can be extracted\n" " from YUV input file. ex: 1000000\n" " The frame rate nominator divided by this\n" " determinates the frame rate in units per tick\n" " -k --keyframe-freq Keyframe frequency\n" " -z --speed Sets the encoder speed level. Higher speed\n" " levels favor quicker encoding over better\n" " quality per bit. Depending on the encoding\n" " mode, and the internal algorithms used,\n" " quality may actually improve with higher\n" " speeds, but in this case bitrate will also\n" " likely increase. The maximum value, and the\n" " meaning of each value, are implementation-\n" " specific and may change depending on the\n" " current encoding mode (rate constrained,\n" " two-pass, etc.).\n" " -d --buf-delay Buffer delay (in frames). Longer delays\n" " allow smoother rate adaptation and provide\n" " better overall quality, but require more\n" " client side buffering and add latency. The\n" " default value is the keyframe interval for\n" " one-pass encoding (or somewhat larger if\n" " --soft-target is used) and infinite for\n" " two-pass encoding.\n" " -b --begin-time Begin encoding at offset into input\n" " -e --end-time End encoding at offset into input\n" "encoder_example accepts only uncompressed RIFF WAV format audio and\n" "YUV4MPEG2 uncompressed video.\n\n"); exit(1); } static int y4m_parse_tags(char *_tags){ int got_w; int got_h; int got_fps; int got_interlace; int got_par; int got_chroma; int tmp_video_fps_n; int tmp_video_fps_d; int tmp_video_par_n; int tmp_video_par_d; char *p; char *q; got_w=got_h=got_fps=got_interlace=got_par=got_chroma=0; for(p=_tags;;p=q){ /*Skip any leading spaces.*/ while(*p==' ')p++; /*If that's all we have, stop.*/ if(p[0]=='\0')break; /*Find the end of this tag.*/ for(q=p+1;*q!='\0'&&*q!=' ';q++); /*Process the tag.*/ switch(p[0]){ case 'W':{ if(sscanf(p+1,"%d",&pic_w)!=1)return -1; got_w=1; }break; case 'H':{ if(sscanf(p+1,"%d",&pic_h)!=1)return -1; got_h=1; }break; case 'F':{ if(sscanf(p+1,"%d:%d",&tmp_video_fps_n,&tmp_video_fps_d)!=2)return -1; got_fps=1; }break; case 'I':{ interlace=p[1]; got_interlace=1; }break; case 'A':{ if(sscanf(p+1,"%d:%d",&tmp_video_par_n,&tmp_video_par_d)!=2)return -1; got_par=1; }break; case 'C':{ if(q-p>16)return -1; memcpy(chroma_type,p+1,q-p-1); chroma_type[q-p-1]='\0'; got_chroma=1; }break; /*Ignore unknown tags.*/ } } if(!got_w||!got_h||!got_fps||!got_interlace||!got_par)return -1; /*Chroma-type is not specified in older files, e.g., those generated by mplayer.*/ if(!got_chroma)strcpy(chroma_type,"420"); /*Update fps and aspect ratio globals if not specified in the command line.*/ if(video_fps_n==-1)video_fps_n=tmp_video_fps_n; if(video_fps_d==-1)video_fps_d=tmp_video_fps_d; if(video_par_n==-1)video_par_n=tmp_video_par_n; if(video_par_d==-1)video_par_d=tmp_video_par_d; return 0; } /*All anti-aliasing filters in the following conversion functions are based on one of two window functions: The 6-tap Lanczos window (for down-sampling and shifts): sinc(\pi*t)*sinc(\pi*t/3), |t|<3 (sinc(t)==sin(t)/t) 0, |t|>=3 The 4-tap Mitchell window (for up-sampling): 7|t|^3-12|t|^2+16/3, |t|<1 -(7/3)|x|^3+12|x|^2-20|x|+32/3, |t|<2 0, |t|>=2 The number of taps is intentionally kept small to reduce computational overhead and limit ringing. The taps from these filters are scaled so that their sum is 1, and the result is scaled by 128 and rounded to integers to create a filter whose intermediate values fit inside 16 bits. Coefficients are rounded in such a way as to ensure their sum is still 128, which is usually equivalent to normal rounding.*/ #define OC_MINI(_a,_b) ((_a)>(_b)?(_b):(_a)) #define OC_MAXI(_a,_b) ((_a)<(_b)?(_b):(_a)) #define OC_CLAMPI(_a,_b,_c) (OC_MAXI(_a,OC_MINI(_b,_c))) /*420jpeg chroma samples are sited like: Y-------Y-------Y-------Y------- | | | | | BR | | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | Y-------Y-------Y-------Y------- | | | | | BR | | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | 420mpeg2 chroma samples are sited like: Y-------Y-------Y-------Y------- | | | | BR | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | Y-------Y-------Y-------Y------- | | | | BR | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | We use a resampling filter to shift the site locations one quarter pixel (at the chroma plane's resolution) to the right. The 4:2:2 modes look exactly the same, except there are twice as many chroma lines, and they are vertically co-sited with the luma samples in both the mpeg2 and jpeg cases (thus requiring no vertical resampling).*/ static void y4m_convert_42xmpeg2_42xjpeg(unsigned char *_dst, unsigned char *_aux){ int c_w; int c_h; int pli; int y; int x; /*Skip past the luma data.*/ _dst+=pic_w*pic_h; /*Compute the size of each chroma plane.*/ c_w=(pic_w+dst_c_dec_h-1)/dst_c_dec_h; c_h=(pic_h+dst_c_dec_v-1)/dst_c_dec_v; for(pli=1;pli<3;pli++){ for(y=0;y>7,255); } for(;x>7,255); } for(;x>7,255); } _dst+=c_w; _aux+=c_w; } } } /*This format is only used for interlaced content, but is included for completeness. 420jpeg chroma samples are sited like: Y-------Y-------Y-------Y------- | | | | | BR | | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | Y-------Y-------Y-------Y------- | | | | | BR | | BR | | | | | Y-------Y-------Y-------Y------- | | | | | | | | | | | | 420paldv chroma samples are sited like: YR------Y-------YR------Y------- | | | | | | | | | | | | YB------Y-------YB------Y------- | | | | | | | | | | | | YR------Y-------YR------Y------- | | | | | | | | | | | | YB------Y-------YB------Y------- | | | | | | | | | | | | We use a resampling filter to shift the site locations one quarter pixel (at the chroma plane's resolution) to the right. Then we use another filter to move the C_r location down one quarter pixel, and the C_b location up one quarter pixel.*/ static void y4m_convert_42xpaldv_42xjpeg(unsigned char *_dst, unsigned char *_aux){ unsigned char *tmp; int c_w; int c_h; int c_sz; int pli; int y; int x; /*Skip past the luma data.*/ _dst+=pic_w*pic_h; /*Compute the size of each chroma plane.*/ c_w=(pic_w+1)/2; c_h=(pic_h+dst_c_dec_h-1)/dst_c_dec_h; c_sz=c_w*c_h; /*First do the horizontal re-sampling. This is the same as the mpeg2 case, except that after the horizontal case, we need to apply a second vertical filter.*/ tmp=_aux+2*c_sz; for(pli=1;pli<3;pli++){ for(y=0;y>7,255); } for(;x>7,255); } for(;x>7,255); } tmp+=c_w; _aux+=c_w; } switch(pli){ case 1:{ tmp-=c_sz; /*Slide C_b up a quarter-pel. This is the same filter used above, but in the other order.*/ for(x=0;x>7,255); } for(;y>7,255); } for(;y>7,255); } _dst++; tmp++; } _dst+=c_sz-c_w; tmp-=c_w; }break; case 2:{ tmp-=c_sz; /*Slide C_r down a quarter-pel. This is the same as the horizontal filter.*/ for(x=0;x>7,255); } for(;y>7,255); } for(;y>7,255); } _dst++; tmp++; } }break; } /*For actual interlaced material, this would have to be done separately on each field, and the shift amounts would be different. C_r moves down 1/8, C_b up 3/8 in the top field, and C_r moves down 3/8, C_b up 1/8 in the bottom field. The corresponding filters would be: Down 1/8 (reverse order for up): [3 -11 125 15 -4 0]/128 Down 3/8 (reverse order for up): [4 -19 98 56 -13 2]/128*/ } } /*422jpeg chroma samples are sited like: Y---BR--Y-------Y---BR--Y------- | | | | | | | | | | | | Y---BR--Y-------Y---BR--Y------- | | | | | | | | | | | | Y---BR--Y-------Y---BR--Y------- | | | | | | | | | | | | Y---BR--Y-------Y---BR--Y------- | | | | | | | | | | | | 411 chroma samples are sited like: YBR-----Y-------Y-------Y------- | | | | | | | | | | | | YBR-----Y-------Y-------Y------- | | | | | | | | | | | | YBR-----Y-------Y-------Y------- | | | | | | | | | | | | YBR-----Y-------Y-------Y------- | | | | | | | | | | | | We use a filter to resample at site locations one eighth pixel (at the source chroma plane's horizontal resolution) and five eighths of a pixel to the right.*/ static void y4m_convert_411_422jpeg(unsigned char *_dst, unsigned char *_aux){ int c_w; int dst_c_w; int c_h; int pli; int y; int x; /*Skip past the luma data.*/ _dst+=pic_w*pic_h; /*Compute the size of each chroma plane.*/ c_w=(pic_w+src_c_dec_h-1)/src_c_dec_h; dst_c_w=(pic_w+dst_c_dec_h-1)/dst_c_dec_h; c_h=(pic_h+dst_c_dec_v-1)/dst_c_dec_v; for(pli=1;pli<3;pli++){ for(y=0;y>7,255); _dst[x<<1|1]=(unsigned char)OC_CLAMPI(0,47*_aux[0]+ 86*_aux[OC_MINI(1,c_w-1)]-5*_aux[OC_MINI(2,c_w-1)]+64>>7,255); } for(;x>7,255); _dst[x<<1|1]=(unsigned char)OC_CLAMPI(0,-3*_aux[x-1]+50*_aux[x]+ 86*_aux[x+1]-5*_aux[x+2]+64>>7,255); } for(;x>7,255); if((x<<1|1)>7,255); } } _dst+=dst_c_w; _aux+=c_w; } } } /*The image is padded with empty chroma components at 4:2:0. This costs about 17 bits a frame to code.*/ static void y4m_convert_mono_420jpeg(unsigned char *_dst, unsigned char *_aux){ int c_sz; _dst+=pic_w*pic_h; c_sz=((pic_w+dst_c_dec_h-1)/dst_c_dec_h)*((pic_h+dst_c_dec_v-1)/dst_c_dec_v); memset(_dst,128,c_sz*2); } #if 0 /*Right now just 444 to 420. Not too hard to generalize.*/ static void y4m_convert_4xxjpeg_42xjpeg(unsigned char *_dst, unsigned char *_aux){ unsigned char *tmp; int c_w; int c_h; int pic_sz; int tmp_sz; int c_sz; int pli; int y; int x; /*Compute the size of each chroma plane.*/ c_w=(pic_w+dst_c_dec_h-1)/dst_c_dec_h; c_h=(pic_h+dst_c_dec_v-1)/dst_c_dec_v; pic_sz=pic_w*pic_h; tmp_sz=c_w*pic_h; c_sz=c_w*c_h; _dst+=pic_sz; for(pli=1;pli<3;pli++){ tmp=_aux+pic_sz; /*In reality, the horizontal and vertical steps could be pipelined, for less memory consumption and better cache performance, but we do them separately for simplicity.*/ /*First do horizontal filtering (convert to 4:2:2)*/ /*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/ for(y=0;y>1]=OC_CLAMPI(0,64*_aux[0]+78*_aux[OC_MINI(1,pic_w-1)]- 17*_aux[OC_MINI(2,pic_w-1)]+3*_aux[OC_MINI(3,pic_w-1)]+64>>7,255); } for(;x>1]=OC_CLAMPI(0,3*(_aux[x-2]+_aux[x+3])-17*(_aux[x-1]+_aux[x+2])+ 78*(_aux[x]+_aux[x+1])+64>>7,255); } for(;x>1]=OC_CLAMPI(0,3*(_aux[x-2]+_aux[pic_w-1])- 17*(_aux[x-1]+_aux[OC_MINI(x+2,pic_w-1)])+ 78*(_aux[x]+_aux[OC_MINI(x+1,pic_w-1)])+64>>7,255); } tmp+=c_w; _aux+=pic_w; } _aux-=pic_sz; tmp-=tmp_sz; /*Now do the vertical filtering.*/ for(x=0;x>1)*c_w]=OC_CLAMPI(0,64*tmp[0]+78*tmp[OC_MINI(1,pic_h-1)*c_w]- 17*tmp[OC_MINI(2,pic_h-1)*c_w]+3*tmp[OC_MINI(3,pic_h-1)*c_w]+ 64>>7,255); } for(;y>1)*c_w]=OC_CLAMPI(0,3*(tmp[(y-2)*c_w]+tmp[(y+3)*c_w])- 17*(tmp[(y-1)*c_w]+tmp[(y+2)*c_w])+78*(tmp[y*c_w]+tmp[(y+1)*c_w])+ 64>>7,255); } for(;y>1)*c_w]=OC_CLAMPI(0,3*(tmp[(y-2)*c_w]+tmp[(pic_h-1)*c_w])- 17*(tmp[(y-1)*c_w]+tmp[OC_MINI(y+2,pic_h-1)*c_w])+ 78*(tmp[y*c_w]+tmp[OC_MINI(y+1,pic_h-1)*c_w])+64>>7,255); } tmp++; _dst++; } _dst-=c_w; } } #endif /*No conversion function needed.*/ static void y4m_convert_null(unsigned char *_dst, unsigned char *_aux){ } static void id_file(char *f){ FILE *test; unsigned char buffer[80]; int ret; /* open it, look for magic */ if(!strcmp(f,"-")){ /* stdin */ test=stdin; }else{ test=fopen(f,"rb"); if(!test){ fprintf(stderr,"Unable to open file %s.\n",f); exit(1); } } ret=fread(buffer,1,4,test); if(ret<4){ fprintf(stderr,"EOF determining file type of file %s.\n",f); exit(1); } if(!memcmp(buffer,"RIFF",4)){ /* possible WAV file */ if(audio){ /* umm, we already have one */ fprintf(stderr,"Multiple RIFF WAVE files specified on command line.\n"); exit(1); } /* Parse the rest of the header */ ret=fread(buffer,1,8,test); if(ret<8)goto riff_err; if(!memcmp(buffer+4,"WAVE",4)){ while(!feof(test)){ ret=fread(buffer,1,4,test); if(ret<4)goto riff_err; if(!memcmp("fmt",buffer,3)){ /* OK, this is our audio specs chunk. Slurp it up. */ ret=fread(buffer,1,20,test); if(ret<20)goto riff_err; if(memcmp(buffer+4,"\001\000",2)){ fprintf(stderr,"The WAV file %s is in a compressed format; " "can't read it.\n",f); exit(1); } audio=test; audio_ch=buffer[6]+(buffer[7]<<8); audio_hz=buffer[8]+(buffer[9]<<8)+ (buffer[10]<<16)+(buffer[11]<<24); if(buffer[18]+(buffer[19]<<8)!=16){ fprintf(stderr,"Can only read 16 bit WAV files for now.\n"); exit(1); } /* Now, align things to the beginning of the data */ /* Look for 'dataxxxx' */ while(!feof(test)){ ret=fread(buffer,1,4,test); if(ret<4)goto riff_err; if(!memcmp("data",buffer,4)){ /* We're there. Ignore the declared size for now. */ ret=fread(buffer,1,4,test); if(ret<4)goto riff_err; fprintf(stderr,"File %s is 16 bit %d channel %d Hz RIFF WAV audio.\n", f,audio_ch,audio_hz); return; } } } } } fprintf(stderr,"Couldn't find WAVE data in RIFF file %s.\n",f); exit(1); } if(!memcmp(buffer,"YUV4",4)){ /* possible YUV2MPEG2 format file */ /* read until newline, or 80 cols, whichever happens first */ int i; for(i=0;i<79;i++){ ret=fread(buffer+i,1,1,test); if(ret<1)goto yuv_err; if(buffer[i]=='\n')break; } if(i==79){ fprintf(stderr,"Error parsing %s header; not a YUV2MPEG2 file?\n",f); } buffer[i]='\0'; if(!memcmp(buffer,"MPEG",4)){ if(video){ /* umm, we already have one */ fprintf(stderr,"Multiple video files specified on command line.\n"); exit(1); } if(buffer[4]!='2'){ fprintf(stderr,"Incorrect YUV input file version; YUV4MPEG2 required.\n"); } ret=y4m_parse_tags((char *)buffer+5); if(ret<0){ fprintf(stderr,"Error parsing YUV4MPEG2 header in file %s.\n",f); exit(1); } if(interlace!='p'){ fprintf(stderr,"Input video is interlaced; Theora handles only progressive scan\n"); exit(1); } if(strcmp(chroma_type,"420")==0||strcmp(chroma_type,"420jpeg")==0){ src_c_dec_h=dst_c_dec_h=src_c_dec_v=dst_c_dec_v=2; y4m_dst_buf_read_sz=pic_w*pic_h+2*((pic_w+1)/2)*((pic_h+1)/2); y4m_aux_buf_sz=y4m_aux_buf_read_sz=0; y4m_convert=y4m_convert_null; } else if(strcmp(chroma_type,"420mpeg2")==0){ src_c_dec_h=dst_c_dec_h=src_c_dec_v=dst_c_dec_v=2; y4m_dst_buf_read_sz=pic_w*pic_h; /*Chroma filter required: read into the aux buf first.*/ y4m_aux_buf_sz=y4m_aux_buf_read_sz=2*((pic_w+1)/2)*((pic_h+1)/2); y4m_convert=y4m_convert_42xmpeg2_42xjpeg; } else if(strcmp(chroma_type,"420paldv")==0){ src_c_dec_h=dst_c_dec_h=src_c_dec_v=dst_c_dec_v=2; y4m_dst_buf_read_sz=pic_w*pic_h; /*Chroma filter required: read into the aux buf first. We need to make two filter passes, so we need some extra space in the aux buffer.*/ y4m_aux_buf_sz=3*((pic_w+1)/2)*((pic_h+1)/2); y4m_aux_buf_read_sz=2*((pic_w+1)/2)*((pic_h+1)/2); y4m_convert=y4m_convert_42xpaldv_42xjpeg; } else if(strcmp(chroma_type,"422")==0){ src_c_dec_h=dst_c_dec_h=2; src_c_dec_v=dst_c_dec_v=1; y4m_dst_buf_read_sz=pic_w*pic_h; /*Chroma filter required: read into the aux buf first.*/ y4m_aux_buf_sz=y4m_aux_buf_read_sz=2*((pic_w+1)/2)*pic_h; y4m_convert=y4m_convert_42xmpeg2_42xjpeg; } else if(strcmp(chroma_type,"411")==0){ src_c_dec_h=4; /*We don't want to introduce any additional sub-sampling, so we promote 4:1:1 material to 4:2:2, as the closest format Theora can handle.*/ dst_c_dec_h=2; src_c_dec_v=dst_c_dec_v=1; y4m_dst_buf_read_sz=pic_w*pic_h; /*Chroma filter required: read into the aux buf first.*/ y4m_aux_buf_sz=y4m_aux_buf_read_sz=2*((pic_w+3)/4)*pic_h; y4m_convert=y4m_convert_411_422jpeg; } else if(strcmp(chroma_type,"444")==0){ src_c_dec_h=dst_c_dec_h=src_c_dec_v=dst_c_dec_v=1; y4m_dst_buf_read_sz=pic_w*pic_h*3; y4m_aux_buf_sz=y4m_aux_buf_read_sz=0; y4m_convert=y4m_convert_null; } else if(strcmp(chroma_type,"444alpha")==0){ src_c_dec_h=dst_c_dec_h=src_c_dec_v=dst_c_dec_v=1; y4m_dst_buf_read_sz=pic_w*pic_h*3; /*Read the extra alpha plane into the aux buf. It will be discarded.*/ y4m_aux_buf_sz=y4m_aux_buf_read_sz=pic_w*pic_h; y4m_convert=y4m_convert_null; } else if(strcmp(chroma_type,"mono")==0){ src_c_dec_h=src_c_dec_v=0; dst_c_dec_h=dst_c_dec_v=2; y4m_dst_buf_read_sz=pic_w*pic_h; y4m_aux_buf_sz=y4m_aux_buf_read_sz=0; y4m_convert=y4m_convert_mono_420jpeg; } else{ fprintf(stderr,"Unknown chroma sampling type: %s\n",chroma_type); exit(1); } /*The size of the final frame buffers is always computed from the destination chroma decimation type.*/ y4m_dst_buf_sz=pic_w*pic_h+2*((pic_w+dst_c_dec_h-1)/dst_c_dec_h)* ((pic_h+dst_c_dec_v-1)/dst_c_dec_v); video=test; fprintf(stderr,"File %s is %dx%d %.02f fps %s video.\n", f,pic_w,pic_h,(double)video_fps_n/video_fps_d,chroma_type); return; } } fprintf(stderr,"Input file %s is neither a WAV nor YUV4MPEG2 file.\n",f); exit(1); riff_err: fprintf(stderr,"EOF parsing RIFF file %s.\n",f); exit(1); yuv_err: fprintf(stderr,"EOF parsing YUV4MPEG2 file %s.\n",f); exit(1); } int spinner=0; char *spinascii="|/-\\"; void spinnit(void){ spinner++; if(spinner==4)spinner=0; fprintf(stderr,"\r%c",spinascii[spinner]); } int fetch_and_process_audio(FILE *audio,ogg_page *audiopage, ogg_stream_state *vo, vorbis_dsp_state *vd, vorbis_block *vb, int audioflag){ static ogg_int64_t samples_sofar=0; ogg_packet op; int i,j; ogg_int64_t beginsample = audio_hz*begin_sec + audio_hz*begin_usec*.000001; ogg_int64_t endsample = audio_hz*end_sec + audio_hz*end_usec*.000001; while(audio && !audioflag){ /* process any audio already buffered */ spinnit(); if(ogg_stream_pageout(vo,audiopage)>0) return 1; if(ogg_stream_eos(vo))return 0; { /* read and process more audio */ signed char readbuffer[4096]; signed char *readptr=readbuffer; int toread=4096/2/audio_ch; int bytesread=fread(readbuffer,1,toread*2*audio_ch,audio); int sampread=bytesread/2/audio_ch; float **vorbis_buffer; int count=0; if(bytesread<=0 || (samples_sofar>=endsample && endsample>0)){ /* end of file. this can be done implicitly, but it's easier to see here in non-clever fashion. Tell the library we're at end of stream so that it can handle the last frame and mark end of stream in the output properly */ vorbis_analysis_wrote(vd,0); }else{ if(samples_sofar < beginsample){ if(samples_sofar+sampread > beginsample){ readptr += (beginsample-samples_sofar)*2*audio_ch; sampread += samples_sofar-beginsample; samples_sofar = sampread+beginsample; }else{ samples_sofar += sampread; sampread = 0; } }else{ samples_sofar += sampread; } if(samples_sofar > endsample && endsample > 0) sampread-= (samples_sofar - endsample); if(sampread>0){ vorbis_buffer=vorbis_analysis_buffer(vd,sampread); /* uninterleave samples */ for(i=0;i=beginframe) frame_state++; } /* check to see if there are dupes to flush */ if(th_encode_packetout(td,frame_state<1,op)>0)return 1; if(frame_state<1){ /* can't get here unless YUV4MPEG stream has no video */ fprintf(stderr,"Video input contains no frames.\n"); exit(1); } /* Theora is a one-frame-in,one-frame-out system; submit a frame for compression and pull out the packet */ /* in two-pass mode's second pass, we need to submit first-pass data */ if(passno==2){ for(;;){ static unsigned char buffer[80]; static int buf_pos; int bytes; /*Ask the encoder how many bytes it would like.*/ bytes=th_encode_ctl(td,TH_ENCCTL_2PASS_IN,NULL,0); if(bytes<0){ fprintf(stderr,"Error submitting pass data in second pass.\n"); exit(1); } /*If it's got enough, stop.*/ if(bytes==0)break; /*Read in some more bytes, if necessary.*/ if(bytes>80-buf_pos)bytes=80-buf_pos; if(bytes>0&&fread(buffer+buf_pos,1,bytes,twopass_file)=bytes)buf_pos=0; /*Otherwise remember how much it used.*/ else buf_pos+=ret; } } /*We submit the buffer to the library as if it were padded, but we do not actually allocate space for the padding. This is okay, because with the 1.0 API the library will never read data from the padded region.*/ ycbcr[0].width=frame_w; ycbcr[0].height=frame_h; ycbcr[0].stride=pic_w; ycbcr[0].data=yuvframe[0]-pic_x-pic_y*pic_w; ycbcr[1].width=frame_c_w; ycbcr[1].height=frame_c_h; ycbcr[1].stride=c_w; ycbcr[1].data=yuvframe[0]+pic_sz-(pic_x/dst_c_dec_h)-(pic_y/dst_c_dec_v)*c_w; ycbcr[2].width=frame_c_w; ycbcr[2].height=frame_c_h; ycbcr[2].stride=c_w; ycbcr[2].data=ycbcr[1].data+c_sz; th_encode_ycbcr_in(td,ycbcr); { unsigned char *temp=yuvframe[0]; yuvframe[0]=yuvframe[1]; yuvframe[1]=temp; frame_state--; } /* in two-pass mode's first pass we need to extract and save the pass data */ if(passno==1){ unsigned char *buffer; int bytes = th_encode_ctl(td, TH_ENCCTL_2PASS_OUT, &buffer, sizeof(buffer)); if(bytes<0){ fprintf(stderr,"Could not read two-pass data from encoder.\n"); exit(1); } if(fwrite(buffer,1,bytes,twopass_file)0) return 1; if(ogg_stream_eos(to)) return 0; ret=fetch_and_process_video_packet(video,twopass_file,passno,td,&op); if(ret<=0)return 0; ogg_stream_packetin(to,&op); } return videoflag; } static int ilog(unsigned _v){ int ret; for(ret=0;_v;ret++)_v>>=1; return ret; } int main(int argc,char *argv[]){ int c,long_option_index,ret; ogg_stream_state to; /* take physical pages, weld into a logical stream of packets */ ogg_stream_state vo; /* take physical pages, weld into a logical stream of packets */ ogg_page og; /* one Ogg bitstream page. Vorbis packets are inside */ ogg_packet op; /* one raw packet of data for decode */ th_enc_ctx *td; th_info ti; th_comment tc; vorbis_info vi; /* struct that stores all the static vorbis bitstream settings */ vorbis_comment vc; /* struct that stores all the user comments */ vorbis_dsp_state vd; /* central working state for the packet->PCM decoder */ vorbis_block vb; /* local working space for packet->PCM decode */ int speed=-1; int audioflag=0; int videoflag=0; int akbps=0; int vkbps=0; int soft_target=0; ogg_int64_t audio_bytesout=0; ogg_int64_t video_bytesout=0; double timebase; FILE *outfile = stdout; FILE *twopass_file = NULL; fpos_t video_rewind_pos; int twopass=0; int passno; #ifdef _WIN32 /* We need to set stdin/stdout to binary mode. Damn windows. */ /* if we were reading/writing a file, it would also need to in binary mode, eg, fopen("file.wav","wb"); */ /* Beware the evil ifdef. We avoid these where we can, but this one we cannot. Don't add any more, you'll probably go to hell if you do. */ _setmode( _fileno( stdin ), _O_BINARY ); _setmode( _fileno( stdout ), _O_BINARY ); #endif while((c=getopt_long(argc,argv,optstring,options,&long_option_index))!=EOF){ switch(c){ case 'o': outfile=fopen(optarg,"wb"); if(outfile==NULL){ fprintf(stderr,"Unable to open output file '%s'\n", optarg); exit(1); } break;; case 'a': audio_q=(float)(atof(optarg)*.099); if(audio_q<-.1 || audio_q>1){ fprintf(stderr,"Illegal audio quality (choose -1 through 10)\n"); exit(1); } audio_r=-1; break; case 'v': video_q=(int)rint(6.3*atof(optarg)); if(video_q<0 || video_q>63){ fprintf(stderr,"Illegal video quality (choose 0 through 10)\n"); exit(1); } break; case 'A': audio_r=(int)(atof(optarg)*1000); if(audio_q<0){ fprintf(stderr,"Illegal audio quality (choose > 0 please)\n"); exit(1); } audio_q=-99; break; case 'V': video_r=(int)rint(atof(optarg)*1000); if(video_r<1){ fprintf(stderr,"Illegal video bitrate (choose > 0 please)\n"); exit(1); } break; case '\1': soft_target=1; break; case 's': video_par_n=(int)rint(atof(optarg)); break; case 'S': video_par_d=(int)rint(atof(optarg)); break; case 'f': video_fps_n=(int)rint(atof(optarg)); break; case 'F': video_fps_d=(int)rint(atof(optarg)); break; case 'c': vp3_compatible=1; break; case 'k': keyframe_frequency=rint(atof(optarg)); if(keyframe_frequency<1 || keyframe_frequency>2147483647){ fprintf(stderr,"Illegal keyframe frequency\n"); exit(1); } break; case 'd': buf_delay=atoi(optarg); if(buf_delay<=0){ fprintf(stderr,"Illegal buffer delay\n"); exit(1); } break; case 'z': speed=atoi(optarg); if(speed<0){ fprintf(stderr,"Illegal speed level\n"); exit(1); } break; case 'b': { char *pos=strchr(optarg,':'); begin_sec=atol(optarg); if(pos){ char *pos2=strchr(++pos,':'); begin_sec*=60; begin_sec+=atol(pos); if(pos2){ pos2++; begin_sec*=60; begin_sec+=atol(pos2); pos=pos2; } }else pos=optarg; pos=strchr(pos,'.'); if(pos){ int digits = strlen(++pos); begin_usec=atol(pos); while(digits++ < 6) begin_usec*=10; } } break; case 'e': { char *pos=strchr(optarg,':'); end_sec=atol(optarg); if(pos){ char *pos2=strchr(++pos,':'); end_sec*=60; end_sec+=atol(pos); if(pos2){ pos2++; end_sec*=60; end_sec+=atol(pos2); pos=pos2; } }else pos=optarg; pos=strchr(pos,'.'); if(pos){ int digits = strlen(++pos); end_usec=atol(pos); while(digits++ < 6) end_usec*=10; } } break; case '\2': twopass=3; /* perform both passes */ twopass_file=tmpfile(); if(!twopass_file){ fprintf(stderr,"Unable to open temporary file for twopass data\n"); exit(1); } break; case '\3': twopass=1; /* perform first pass */ twopass_file=fopen(optarg,"wb"); if(!twopass_file){ fprintf(stderr,"Unable to open \'%s\' for twopass data\n",optarg); exit(1); } break; case '\4': twopass=2; /* perform second pass */ twopass_file=fopen(optarg,"rb"); if(!twopass_file){ fprintf(stderr,"Unable to open twopass data file \'%s\'",optarg); exit(1); } break; default: usage(); } } if(soft_target){ if(video_r<=0){ fprintf(stderr,"Soft rate target (--soft-target) requested without a bitrate (-V).\n"); exit(1); } if(video_q==-1) video_q=0; }else{ if(video_q==-1){ if(video_r>0) video_q=0; else video_q=48; } } if(keyframe_frequency<=0){ /*Use a default keyframe frequency of 64 for 1-pass (streaming) mode, and 256 for two-pass mode.*/ keyframe_frequency=twopass?256:64; } while(optind-99) ret = vorbis_encode_init_vbr(&vi,audio_ch,audio_hz,audio_q); else ret = vorbis_encode_init(&vi,audio_ch,audio_hz,-1, (int)(64870*(ogg_int64_t)audio_r>>16),-1); if(ret){ fprintf(stderr,"The Vorbis encoder could not set up a mode according to\n" "the requested quality or bitrate.\n\n"); exit(1); } vorbis_comment_init(&vc); vorbis_analysis_init(&vd,&vi); vorbis_block_init(&vd,&vb); } for(passno=(twopass==3?1:twopass);passno<=(twopass==3?2:twopass);passno++){ /* Set up Theora encoder */ if(!video){ fprintf(stderr,"No video files submitted for compression?\n"); exit(1); } /* Theora has a divisible-by-sixteen restriction for the encoded frame size */ /* scale the picture size up to the nearest /16 and calculate offsets */ frame_w=pic_w+15&~0xF; frame_h=pic_h+15&~0xF; /*Force the offsets to be even so that chroma samples line up like we expect.*/ pic_x=frame_w-pic_w>>1&~1; pic_y=frame_h-pic_h>>1&~1; th_info_init(&ti); ti.frame_width=frame_w; ti.frame_height=frame_h; ti.pic_width=pic_w; ti.pic_height=pic_h; ti.pic_x=pic_x; ti.pic_y=pic_y; ti.fps_numerator=video_fps_n; ti.fps_denominator=video_fps_d; ti.aspect_numerator=video_par_n; ti.aspect_denominator=video_par_d; ti.colorspace=TH_CS_UNSPECIFIED; /*Account for the Ogg page overhead. This is 1 byte per 255 for lacing values, plus 26 bytes per 4096 bytes for the page header, plus approximately 1/2 byte per packet (not accounted for here).*/ ti.target_bitrate=(int)(64870*(ogg_int64_t)video_r>>16); ti.quality=video_q; ti.keyframe_granule_shift=ilog(keyframe_frequency-1); if(dst_c_dec_h==2){ if(dst_c_dec_v==2)ti.pixel_fmt=TH_PF_420; else ti.pixel_fmt=TH_PF_422; } else ti.pixel_fmt=TH_PF_444; td=th_encode_alloc(&ti); th_info_clear(&ti); /* setting just the granule shift only allows power-of-two keyframe spacing. Set the actual requested spacing. */ ret=th_encode_ctl(td,TH_ENCCTL_SET_KEYFRAME_FREQUENCY_FORCE, &keyframe_frequency,sizeof(keyframe_frequency-1)); if(ret<0){ fprintf(stderr,"Could not set keyframe interval to %d.\n",(int)keyframe_frequency); } if(vp3_compatible){ ret=th_encode_ctl(td,TH_ENCCTL_SET_VP3_COMPATIBLE,&vp3_compatible, sizeof(vp3_compatible)); if(ret<0||!vp3_compatible){ fprintf(stderr,"Could not enable strict VP3 compatibility.\n"); if(ret>=0){ fprintf(stderr,"Ensure your source format is supported by VP3.\n"); fprintf(stderr, "(4:2:0 pixel format, width and height multiples of 16).\n"); } } } if(soft_target){ /* reverse the rate control flags to favor a 'long time' strategy */ int arg = TH_RATECTL_CAP_UNDERFLOW; ret=th_encode_ctl(td,TH_ENCCTL_SET_RATE_FLAGS,&arg,sizeof(arg)); if(ret<0) fprintf(stderr,"Could not set encoder flags for --soft-target\n"); /* Default buffer control is overridden on two-pass */ if(!twopass&&buf_delay<0){ if((keyframe_frequency*7>>1) > 5*video_fps_n/video_fps_d) arg=keyframe_frequency*7>>1; else arg=5*video_fps_n/video_fps_d; ret=th_encode_ctl(td,TH_ENCCTL_SET_RATE_BUFFER,&arg,sizeof(arg)); if(ret<0) fprintf(stderr,"Could not set rate control buffer for --soft-target\n"); } } /* set up two-pass if needed */ if(passno==1){ unsigned char *buffer; int bytes; bytes=th_encode_ctl(td,TH_ENCCTL_2PASS_OUT,&buffer,sizeof(buffer)); if(bytes<0){ fprintf(stderr,"Could not set up the first pass of two-pass mode.\n"); fprintf(stderr,"Did you remember to specify an estimated bitrate?\n"); exit(1); } /*Perform a seek test to ensure we can overwrite this placeholder data at the end; this is better than letting the user sit through a whole encode only to find out their pass 1 file is useless at the end.*/ if(fseek(twopass_file,0,SEEK_SET)<0){ fprintf(stderr,"Unable to seek in two-pass data file.\n"); exit(1); } if(fwrite(buffer,1,bytes,twopass_file)=0){ ret=th_encode_ctl(td,TH_ENCCTL_SET_RATE_BUFFER, &buf_delay,sizeof(buf_delay)); if(ret<0){ fprintf(stderr,"Warning: could not set desired buffer delay.\n"); } } /*Speed should also be set after the current encoder mode is established, since the available speed levels may change depending.*/ if(speed>=0){ int speed_max; int ret; ret=th_encode_ctl(td,TH_ENCCTL_GET_SPLEVEL_MAX, &speed_max,sizeof(speed_max)); if(ret<0){ fprintf(stderr,"Warning: could not determine maximum speed level.\n"); speed_max=0; } ret=th_encode_ctl(td,TH_ENCCTL_SET_SPLEVEL,&speed,sizeof(speed)); if(ret<0){ fprintf(stderr,"Warning: could not set speed level to %i of %i\n", speed,speed_max); if(speed>speed_max){ fprintf(stderr,"Setting it to %i instead\n",speed_max); } ret=th_encode_ctl(td,TH_ENCCTL_SET_SPLEVEL, &speed_max,sizeof(speed_max)); if(ret<0){ fprintf(stderr,"Warning: could not set speed level to %i of %i\n", speed_max,speed_max); } } } /* write the bitstream header packets with proper page interleave */ th_comment_init(&tc); /* first packet will get its own page automatically */ if(th_encode_flushheader(td,&tc,&op)<=0){ fprintf(stderr,"Internal Theora library error.\n"); exit(1); } if(passno!=1){ ogg_stream_packetin(&to,&op); if(ogg_stream_pageout(&to,&og)!=1){ fprintf(stderr,"Internal Ogg library error.\n"); exit(1); } fwrite(og.header,1,og.header_len,outfile); fwrite(og.body,1,og.body_len,outfile); } /* create the remaining theora headers */ for(;;){ ret=th_encode_flushheader(td,&tc,&op); if(ret<0){ fprintf(stderr,"Internal Theora library error.\n"); exit(1); } else if(!ret)break; if(passno!=1)ogg_stream_packetin(&to,&op); } if(audio && passno!=1){ ogg_packet header; ogg_packet header_comm; ogg_packet header_code; vorbis_analysis_headerout(&vd,&vc,&header,&header_comm,&header_code); ogg_stream_packetin(&vo,&header); /* automatically placed in its own page */ if(ogg_stream_pageout(&vo,&og)!=1){ fprintf(stderr,"Internal Ogg library error.\n"); exit(1); } fwrite(og.header,1,og.header_len,outfile); fwrite(og.body,1,og.body_len,outfile); /* remaining vorbis header packets */ ogg_stream_packetin(&vo,&header_comm); ogg_stream_packetin(&vo,&header_code); } /* Flush the rest of our headers. This ensures the actual data in each stream will start on a new page, as per spec. */ if(passno!=1){ for(;;){ int result = ogg_stream_flush(&to,&og); if(result<0){ /* can't get here */ fprintf(stderr,"Internal Ogg library error.\n"); exit(1); } if(result==0)break; fwrite(og.header,1,og.header_len,outfile); fwrite(og.body,1,og.body_len,outfile); } } if(audio && passno!=1){ for(;;){ int result=ogg_stream_flush(&vo,&og); if(result<0){ /* can't get here */ fprintf(stderr,"Internal Ogg library error.\n"); exit(1); } if(result==0)break; fwrite(og.header,1,og.header_len,outfile); fwrite(og.body,1,og.body_len,outfile); } } /* setup complete. Raw processing loop */ switch(passno){ case 0: case 2: fprintf(stderr,"\rCompressing.... \n"); break; case 1: fprintf(stderr,"\rScanning first pass.... \n"); break; } for(;;){ int audio_or_video=-1; if(passno==1){ ogg_packet op; int ret=fetch_and_process_video_packet(video,twopass_file,passno,td,&op); if(ret<0)break; if(op.e_o_s)break; /* end of stream */ timebase=th_granule_time(td,op.granulepos); audio_or_video=1; }else{ double audiotime; double videotime; ogg_page audiopage; ogg_page videopage; /* is there an audio page flushed? If not, fetch one if possible */ audioflag=fetch_and_process_audio(audio,&audiopage,&vo,&vd,&vb,audioflag); /* is there a video page flushed? If not, fetch one if possible */ videoflag=fetch_and_process_video(video,&videopage,&to,td,twopass_file,passno,videoflag); /* no pages of either? Must be end of stream. */ if(!audioflag && !videoflag)break; /* which is earlier; the end of the audio page or the end of the video page? Flush the earlier to stream */ audiotime= audioflag?vorbis_granule_time(&vd,ogg_page_granulepos(&audiopage)):-1; videotime= videoflag?th_granule_time(td,ogg_page_granulepos(&videopage)):-1; if(!audioflag){ audio_or_video=1; } else if(!videoflag) { audio_or_video=0; } else { if(audiotime 0){ int hundredths=(int)(timebase*100-(long)timebase*100); int seconds=(long)timebase%60; int minutes=((long)timebase/60)%60; int hours=(long)timebase/3600; if(audio_or_video)vkbps=(int)rint(video_bytesout*8./timebase*.001); else akbps=(int)rint(audio_bytesout*8./timebase*.001); fprintf(stderr, "\r %d:%02d:%02d.%02d audio: %dkbps video: %dkbps ", hours,minutes,seconds,hundredths,akbps,vkbps); } } if(video)th_encode_free(td); } /* clear out state */ if(audio && twopass!=1){ ogg_stream_clear(&vo); vorbis_block_clear(&vb); vorbis_dsp_clear(&vd); vorbis_comment_clear(&vc); vorbis_info_clear(&vi); if(audio!=stdin)fclose(audio); } if(video){ ogg_stream_clear(&to); th_comment_clear(&tc); if(video!=stdin)fclose(video); } if(outfile && outfile!=stdout)fclose(outfile); if(twopass_file)fclose(twopass_file); fprintf(stderr,"\r \ndone.\n\n"); return(0); }