/* * Copyright (c) 2007-2015, SUSE LLC * * This program is licensed under the BSD license, read LICENSE.BSD * for further information */ /* * order.c * * Transaction ordering */ #include #include #include #include #include #include "transaction.h" #include "bitmap.h" #include "pool.h" #include "repo.h" #include "util.h" struct _TransactionElement { Id p; /* solvable id */ Id edges; /* pointer into edges data */ Id mark; }; struct _TransactionOrderdata { struct _TransactionElement *tes; int ntes; Id *invedgedata; int ninvedgedata; Queue *cycles; }; #define TYPE_BROKEN (1<<0) #define TYPE_CON (1<<1) #define TYPE_REQ_P (1<<2) #define TYPE_PREREQ_P (1<<3) #define TYPE_REC (1<<4) #define TYPE_REQ (1<<5) #define TYPE_PREREQ (1<<6) #define TYPE_CYCLETAIL (1<<16) #define TYPE_CYCLEHEAD (1<<17) #define EDGEDATA_BLOCK 127 void transaction_clone_orderdata(Transaction *trans, Transaction *srctrans) { struct _TransactionOrderdata *od = srctrans->orderdata; if (!od) return; trans->orderdata = solv_calloc(1, sizeof(*trans->orderdata)); trans->orderdata->tes = solv_memdup2(od->tes, od->ntes, sizeof(*od->tes)); trans->orderdata->ntes = od->ntes; trans->orderdata->invedgedata = solv_memdup2(od->invedgedata, od->ninvedgedata, sizeof(Id)); trans->orderdata->ninvedgedata = od->ninvedgedata; if (od->cycles) { trans->orderdata->cycles = solv_calloc(1, sizeof(Queue)); queue_init_clone(trans->orderdata->cycles, od->cycles); } } void transaction_free_orderdata(Transaction *trans) { if (trans->orderdata) { struct _TransactionOrderdata *od = trans->orderdata; od->tes = solv_free(od->tes); od->invedgedata = solv_free(od->invedgedata); if (od->cycles) { queue_free(od->cycles); od->cycles = solv_free(od->cycles); } trans->orderdata = solv_free(trans->orderdata); } } struct orderdata { Transaction *trans; struct _TransactionElement *tes; int ntes; Id *edgedata; int nedgedata; Id *invedgedata; Queue cycles; Queue cyclesdata; int ncycles; }; static int addteedge(struct orderdata *od, int from, int to, int type) { int i; struct _TransactionElement *te; if (from == to) return 0; /* printf("edge %d(%s) -> %d(%s) type %x\n", from, pool_solvid2str(pool, od->tes[from].p), to, pool_solvid2str(pool, od->tes[to].p), type); */ te = od->tes + from; for (i = te->edges; od->edgedata[i]; i += 2) if (od->edgedata[i] == to) break; /* test of brokenness */ if (type == TYPE_BROKEN) return od->edgedata[i] && (od->edgedata[i + 1] & TYPE_BROKEN) != 0 ? 1 : 0; if (od->edgedata[i]) { od->edgedata[i + 1] |= type; return 0; } if (i + 1 == od->nedgedata) { /* printf("tail add %d\n", i - te->edges); */ if (!i) te->edges = ++i; od->edgedata = solv_extend(od->edgedata, od->nedgedata, 3, sizeof(Id), EDGEDATA_BLOCK); } else { /* printf("extend %d\n", i - te->edges); */ od->edgedata = solv_extend(od->edgedata, od->nedgedata, 3 + (i - te->edges), sizeof(Id), EDGEDATA_BLOCK); if (i > te->edges) memcpy(od->edgedata + od->nedgedata, od->edgedata + te->edges, sizeof(Id) * (i - te->edges)); i = od->nedgedata + (i - te->edges); te->edges = od->nedgedata; } od->edgedata[i] = to; od->edgedata[i + 1] = type; od->edgedata[i + 2] = 0; /* end marker */ od->nedgedata = i + 3; return 0; } static int addedge(struct orderdata *od, Id from, Id to, int type) { Transaction *trans = od->trans; Pool *pool = trans->pool; Solvable *s; struct _TransactionElement *te; int i; /* printf("addedge %d %d type %d\n", from, to, type); */ s = pool->solvables + from; if (s->repo == pool->installed && trans->transaction_installed[from - pool->installed->start]) { /* obsolete, map to install */ if (trans->transaction_installed[from - pool->installed->start] > 0) from = trans->transaction_installed[from - pool->installed->start]; else { int ret = 0; Queue ti; Id tibuf[5]; queue_init_buffer(&ti, tibuf, sizeof(tibuf)/sizeof(*tibuf)); transaction_all_obs_pkgs(trans, from, &ti); for (i = 0; i < ti.count; i++) ret |= addedge(od, ti.elements[i], to, type); queue_free(&ti); return ret; } } s = pool->solvables + to; if (s->repo == pool->installed && trans->transaction_installed[to - pool->installed->start]) { /* obsolete, map to install */ if (trans->transaction_installed[to - pool->installed->start] > 0) to = trans->transaction_installed[to - pool->installed->start]; else { int ret = 0; Queue ti; Id tibuf[5]; queue_init_buffer(&ti, tibuf, sizeof(tibuf)/sizeof(*tibuf)); transaction_all_obs_pkgs(trans, to, &ti); for (i = 0; i < ti.count; i++) ret |= addedge(od, from, ti.elements[i], type); queue_free(&ti); return ret; } } /* map from/to to te numbers */ for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) if (te->p == to) break; if (i == od->ntes) return 0; to = i; for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) if (te->p == from) break; if (i == od->ntes) return 0; return addteedge(od, i, to, type); } static inline int havescripts(Pool *pool, Id solvid) { Solvable *s = pool->solvables + solvid; const char *dep; if (s->requires) { Id req, *reqp; int inpre = 0; reqp = s->repo->idarraydata + s->requires; while ((req = *reqp++) != 0) { if (req == SOLVABLE_PREREQMARKER) { inpre = 1; continue; } if (!inpre) continue; dep = pool_id2str(pool, req); if (*dep == '/' && strcmp(dep, "/sbin/ldconfig") != 0) return 1; } } return 0; } static void addsolvableedges(struct orderdata *od, Solvable *s) { Transaction *trans = od->trans; Pool *pool = trans->pool; Id req, *reqp, con, *conp, rec, *recp; Id p, p2, pp2; int i, j, pre, numins; Repo *installed = pool->installed; Solvable *s2; Queue depq; int provbyinst; #if 0 printf("addsolvableedges %s\n", pool_solvable2str(pool, s)); #endif p = s - pool->solvables; queue_init(&depq); if (s->requires) { reqp = s->repo->idarraydata + s->requires; pre = TYPE_REQ; while ((req = *reqp++) != 0) { if (req == SOLVABLE_PREREQMARKER) { pre = TYPE_PREREQ; continue; } queue_empty(&depq); numins = 0; /* number of packages to be installed providing it */ provbyinst = 0; /* provided by kept package */ FOR_PROVIDES(p2, pp2, req) { s2 = pool->solvables + p2; if (p2 == p) { depq.count = 0; /* self provides */ break; } if (s2->repo == installed && !MAPTST(&trans->transactsmap, p2)) { provbyinst = 1; continue; } if (s2->repo != installed && !MAPTST(&trans->transactsmap, p2)) continue; /* package stays uninstalled */ if (s->repo == installed) { /* s gets uninstalled */ queue_pushunique(&depq, p2); if (s2->repo != installed) numins++; } else { if (s2->repo == installed) continue; /* s2 gets uninstalled */ queue_pushunique(&depq, p2); } } if (provbyinst) { /* prune to harmless ->inst edges */ for (i = j = 0; i < depq.count; i++) if (pool->solvables[depq.elements[i]].repo != installed) depq.elements[j++] = depq.elements[i]; depq.count = j; } if (numins && depq.count) { if (s->repo == installed) { for (i = 0; i < depq.count; i++) { if (pool->solvables[depq.elements[i]].repo == installed) { for (j = 0; j < depq.count; j++) { if (pool->solvables[depq.elements[j]].repo != installed) { if (trans->transaction_installed[depq.elements[i] - pool->installed->start] == depq.elements[j]) continue; /* no self edge */ #if 0 printf("add interrreq uninst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, depq.elements[i]), pool_dep2str(pool, req), pool_solvid2str(pool, depq.elements[j])); #endif addedge(od, depq.elements[i], depq.elements[j], pre == TYPE_PREREQ ? TYPE_PREREQ_P : TYPE_REQ_P); } } } } } /* no mixed types, remove all deps on uninstalls */ for (i = j = 0; i < depq.count; i++) if (pool->solvables[depq.elements[i]].repo != installed) depq.elements[j++] = depq.elements[i]; depq.count = j; } for (i = 0; i < depq.count; i++) { p2 = depq.elements[i]; if (pool->solvables[p2].repo != installed) { /* all elements of depq are installs, thus have different TEs */ if (pool->solvables[p].repo != installed) { #if 0 printf("add inst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p), pool_dep2str(pool, req), pool_solvid2str(pool, p2)); #endif addedge(od, p, p2, pre); } else { #if 0 printf("add uninst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p), pool_dep2str(pool, req), pool_solvid2str(pool, p2)); #endif addedge(od, p, p2, pre == TYPE_PREREQ ? TYPE_PREREQ_P : TYPE_REQ_P); } } else { if (s->repo != installed) continue; /* no inst->uninst edges, please! */ /* uninst -> uninst edge. Those make trouble. Only add if we must */ if (trans->transaction_installed[p - installed->start] && !havescripts(pool, p)) { /* p is obsoleted by another package and has no scripts */ /* we assume that the obsoletor is good enough to replace p */ continue; } #if 0 printf("add uninst->uninst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p), pool_dep2str(pool, req), pool_solvid2str(pool, p2)); #endif addedge(od, p2, p, pre == TYPE_PREREQ ? TYPE_PREREQ_P : TYPE_REQ_P); } } } } if (s->conflicts) { conp = s->repo->idarraydata + s->conflicts; while ((con = *conp++) != 0) { FOR_PROVIDES(p2, pp2, con) { if (p2 == p) continue; s2 = pool->solvables + p2; if (!s2->repo) continue; if (s->repo == installed) { if (s2->repo != installed && MAPTST(&trans->transactsmap, p2)) { /* deinstall p before installing p2 */ #if 0 printf("add conflict uninst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p2), pool_dep2str(pool, con), pool_solvid2str(pool, p)); #endif addedge(od, p2, p, TYPE_CON); } } else { if (s2->repo == installed && MAPTST(&trans->transactsmap, p2)) { /* deinstall p2 before installing p */ #if 0 printf("add conflict uninst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p), pool_dep2str(pool, con), pool_solvid2str(pool, p2)); #endif addedge(od, p, p2, TYPE_CON); } } } } } if (s->recommends && s->repo != installed) { recp = s->repo->idarraydata + s->recommends; while ((rec = *recp++) != 0) { queue_empty(&depq); FOR_PROVIDES(p2, pp2, rec) { s2 = pool->solvables + p2; if (p2 == p) { depq.count = 0; /* self provides */ break; } if (s2->repo == installed && !MAPTST(&trans->transactsmap, p2)) continue; if (s2->repo != installed && !MAPTST(&trans->transactsmap, p2)) continue; /* package stays uninstalled */ if (s2->repo != installed) queue_pushunique(&depq, p2); } for (i = 0; i < depq.count; i++) { p2 = depq.elements[i]; if (pool->solvables[p2].repo != installed) { #if 0 printf("add recommends inst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p), pool_dep2str(pool, rec), pool_solvid2str(pool, p2)); #endif addedge(od, p, p2, TYPE_REC); } } } } if (s->repo == installed && solvable_lookup_idarray(s, SOLVABLE_TRIGGERS, &depq) && depq.count) { /* we're getting deinstalled/updated. Try to do this before our * triggers are hit */ for (i = 0; i < depq.count; i++) { Id tri = depq.elements[i]; FOR_PROVIDES(p2, pp2, tri) { if (p2 == p) continue; s2 = pool->solvables + p2; if (!s2->repo) continue; if (s2->name == s->name) continue; /* obsoleted anyway */ if (s2->repo != installed && MAPTST(&trans->transactsmap, p2)) { /* deinstall/update p before installing p2 */ #if 0 printf("add trigger uninst->inst edge (%s -> %s -> %s)\n", pool_solvid2str(pool, p2), pool_dep2str(pool, tri), pool_solvid2str(pool, p)); #endif addedge(od, p2, p, TYPE_CON); } } } } queue_free(&depq); } /* break an edge in a cycle */ static void breakcycle(struct orderdata *od, Id *cycle) { Pool *pool = od->trans->pool; Id ddegmin, ddegmax, ddeg; int k, l; struct _TransactionElement *te; l = 0; ddegmin = ddegmax = 0; for (k = 0; cycle[k + 1]; k += 2) { ddeg = od->edgedata[cycle[k + 1] + 1]; if (ddeg > ddegmax) ddegmax = ddeg; if (!k || ddeg < ddegmin) { l = k; ddegmin = ddeg; continue; } if (ddeg == ddegmin) { if (havescripts(pool, od->tes[cycle[l]].p) && !havescripts(pool, od->tes[cycle[k]].p)) { /* prefer k, as l comes from a package with contains scriptlets */ l = k; continue; } /* same edge value, check for prereq */ } } /* record brkoen cycle starting with the tail */ queue_push(&od->cycles, od->cyclesdata.count); /* offset into data */ queue_push(&od->cycles, k / 2); /* cycle elements */ queue_push(&od->cycles, od->edgedata[cycle[l + 1] + 1]); /* broken edge */ queue_push(&od->cycles, (ddegmax << 16) | ddegmin); /* max/min values */ od->ncycles++; for (k = l;;) { k += 2; if (!cycle[k + 1]) k = 0; queue_push(&od->cyclesdata, cycle[k]); if (k == l) break; } queue_push(&od->cyclesdata, 0); /* mark end */ /* break that edge */ od->edgedata[cycle[l + 1] + 1] |= TYPE_BROKEN; #if 1 if (ddegmin < TYPE_REQ) return; #endif /* cycle recorded, print it */ if (ddegmin >= TYPE_REQ && (ddegmax & TYPE_PREREQ) != 0) POOL_DEBUG(SOLV_DEBUG_STATS, "CRITICAL "); POOL_DEBUG(SOLV_DEBUG_STATS, "cycle: --> "); for (k = 0; cycle[k + 1]; k += 2) { te = od->tes + cycle[k]; if ((od->edgedata[cycle[k + 1] + 1] & TYPE_BROKEN) != 0) POOL_DEBUG(SOLV_DEBUG_STATS, "%s ##%x##> ", pool_solvid2str(pool, te->p), od->edgedata[cycle[k + 1] + 1]); else POOL_DEBUG(SOLV_DEBUG_STATS, "%s --%x--> ", pool_solvid2str(pool, te->p), od->edgedata[cycle[k + 1] + 1]); } POOL_DEBUG(SOLV_DEBUG_STATS, "\n"); } static inline void dump_tes(struct orderdata *od) { Pool *pool = od->trans->pool; int i, j; Queue obsq; struct _TransactionElement *te, *te2; queue_init(&obsq); for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) { Solvable *s = pool->solvables + te->p; POOL_DEBUG(SOLV_DEBUG_RESULT, "TE %4d: %c%s\n", i, s->repo == pool->installed ? '-' : '+', pool_solvable2str(pool, s)); if (s->repo != pool->installed) { queue_empty(&obsq); transaction_all_obs_pkgs(od->trans, te->p, &obsq); for (j = 0; j < obsq.count; j++) POOL_DEBUG(SOLV_DEBUG_RESULT, " -%s\n", pool_solvid2str(pool, obsq.elements[j])); } for (j = te->edges; od->edgedata[j]; j += 2) { te2 = od->tes + od->edgedata[j]; if ((od->edgedata[j + 1] & TYPE_BROKEN) == 0) POOL_DEBUG(SOLV_DEBUG_RESULT, " --%x--> TE %4d: %s\n", od->edgedata[j + 1], od->edgedata[j], pool_solvid2str(pool, te2->p)); else POOL_DEBUG(SOLV_DEBUG_RESULT, " ##%x##> TE %4d: %s\n", od->edgedata[j + 1], od->edgedata[j], pool_solvid2str(pool, te2->p)); } } } static void reachable(struct orderdata *od, Id i) { struct _TransactionElement *te = od->tes + i; int j, k; if (te->mark != 0) return; te->mark = 1; for (j = te->edges; (k = od->edgedata[j]) != 0; j += 2) { if ((od->edgedata[j + 1] & TYPE_BROKEN) != 0) continue; if (!od->tes[k].mark) reachable(od, k); if (od->tes[k].mark == 2) { te->mark = 2; return; } } te->mark = -1; } static void addcycleedges(struct orderdata *od, Id *cycle, Queue *todo) { #if 0 Transaction *trans = od->trans; Pool *pool = trans->pool; #endif struct _TransactionElement *te; int i, j, k, tail; int head; #if 0 printf("addcycleedges\n"); for (i = 0; (j = cycle[i]) != 0; i++) printf("cycle %s\n", pool_solvid2str(pool, od->tes[j].p)); #endif /* first add all the tail cycle edges */ /* see what we can reach from the cycle */ queue_empty(todo); for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) te->mark = 0; for (i = 0; (j = cycle[i]) != 0; i++) { od->tes[j].mark = -1; queue_push(todo, j); } while (todo->count) { i = queue_pop(todo); te = od->tes + i; if (te->mark > 0) continue; te->mark = te->mark < 0 ? 2 : 1; for (j = te->edges; (k = od->edgedata[j]) != 0; j += 2) { if ((od->edgedata[j + 1] & TYPE_BROKEN) != 0) continue; if (od->tes[k].mark > 0) continue; /* no need to visit again */ queue_push(todo, k); } } /* now all cycle TEs are marked with 2, all TEs reachable * from the cycle are marked with 1 */ tail = cycle[0]; od->tes[tail].mark = 1; /* no need to add edges */ for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) { if (te->mark) continue; /* reachable from cycle */ for (j = te->edges; (k = od->edgedata[j]) != 0; j += 2) { if ((od->edgedata[j + 1] & TYPE_BROKEN) != 0) continue; if (od->tes[k].mark != 2) continue; /* We found an edge to the cycle. Add an extra edge to the tail */ /* the TE was not reachable, so we're not creating a new cycle! */ #if 0 printf("adding TO TAIL cycle edge %d->%d %s->%s!\n", i, tail, pool_solvid2str(pool, od->tes[i].p), pool_solvid2str(pool, od->tes[tail].p)); #endif j -= te->edges; /* in case we move */ addteedge(od, i, tail, TYPE_CYCLETAIL); j += te->edges; break; /* one edge is enough */ } } /* now add all head cycle edges */ /* reset marks */ for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) te->mark = 0; head = 0; for (i = 0; (j = cycle[i]) != 0; i++) { head = j; od->tes[j].mark = 2; } /* first the head to save some time */ te = od->tes + head; for (j = te->edges; (k = od->edgedata[j]) != 0; j += 2) { if ((od->edgedata[j + 1] & TYPE_BROKEN) != 0) continue; if (!od->tes[k].mark) reachable(od, k); if (od->tes[k].mark == -1) od->tes[k].mark = -2; /* no need for another edge */ } for (i = 0; cycle[i] != 0; i++) { if (cycle[i] == head) break; te = od->tes + cycle[i]; for (j = te->edges; (k = od->edgedata[j]) != 0; j += 2) { if ((od->edgedata[j + 1] & TYPE_BROKEN) != 0) continue; /* see if we can reach a cycle TE from k */ if (!od->tes[k].mark) reachable(od, k); if (od->tes[k].mark == -1) { #if 0 printf("adding FROM HEAD cycle edge %d->%d %s->%s [%s]!\n", head, k, pool_solvid2str(pool, od->tes[head].p), pool_solvid2str(pool, od->tes[k].p), pool_solvid2str(pool, od->tes[cycle[i]].p)); #endif addteedge(od, head, k, TYPE_CYCLEHEAD); od->tes[k].mark = -2; /* no need to add that one again */ } } } } void transaction_order(Transaction *trans, int flags) { Pool *pool = trans->pool; Queue *tr = &trans->steps; Repo *installed = pool->installed; Id p; Solvable *s; int i, j, k, numte, numedge; struct orderdata od; struct _TransactionElement *te; Queue todo, obsq, samerepoq, uninstq; int cycstart, cycel; Id *cycle; int oldcount; int start, now; Repo *lastrepo; int lastmedia; Id *temedianr; start = now = solv_timems(0); POOL_DEBUG(SOLV_DEBUG_STATS, "ordering transaction\n"); /* free old data if present */ if (trans->orderdata) { struct _TransactionOrderdata *od = trans->orderdata; od->tes = solv_free(od->tes); od->invedgedata = solv_free(od->invedgedata); trans->orderdata = solv_free(trans->orderdata); } /* create a transaction element for every active component */ numte = 0; for (i = 0; i < tr->count; i++) { p = tr->elements[i]; s = pool->solvables + p; if (installed && s->repo == installed && trans->transaction_installed[p - installed->start]) continue; numte++; } POOL_DEBUG(SOLV_DEBUG_STATS, "transaction elements: %d\n", numte); if (!numte) return; /* nothing to do... */ numte++; /* leave first one zero */ memset(&od, 0, sizeof(od)); od.trans = trans; od.ntes = numte; od.tes = solv_calloc(numte, sizeof(*od.tes)); od.edgedata = solv_extend(0, 0, 1, sizeof(Id), EDGEDATA_BLOCK); od.edgedata[0] = 0; od.nedgedata = 1; queue_init(&od.cycles); /* initialize TEs */ for (i = 0, te = od.tes + 1; i < tr->count; i++) { p = tr->elements[i]; s = pool->solvables + p; if (installed && s->repo == installed && trans->transaction_installed[p - installed->start]) continue; te->p = p; te++; } /* create dependency graph */ for (i = 0; i < tr->count; i++) addsolvableedges(&od, pool->solvables + tr->elements[i]); /* count edges */ numedge = 0; for (i = 1, te = od.tes + i; i < numte; i++, te++) for (j = te->edges; od.edgedata[j]; j += 2) numedge++; POOL_DEBUG(SOLV_DEBUG_STATS, "edges: %d, edge space: %d\n", numedge, od.nedgedata / 2); POOL_DEBUG(SOLV_DEBUG_STATS, "edge creation took %d ms\n", solv_timems(now)); #if 0 dump_tes(&od); #endif now = solv_timems(0); /* kill all cycles */ queue_init(&todo); for (i = numte - 1; i > 0; i--) queue_push(&todo, i); while (todo.count) { i = queue_pop(&todo); /* printf("- look at TE %d\n", i); */ if (i < 0) { i = -i; od.tes[i].mark = 2; /* done with that one */ continue; } te = od.tes + i; if (te->mark == 2) continue; /* already finished before */ if (te->mark == 0) { int edgestovisit = 0; /* new node, visit edges */ for (j = te->edges; (k = od.edgedata[j]) != 0; j += 2) { if ((od.edgedata[j + 1] & TYPE_BROKEN) != 0) continue; if (od.tes[k].mark == 2) continue; /* no need to visit again */ if (!edgestovisit++) queue_push(&todo, -i); /* end of edges marker */ queue_push(&todo, k); } if (!edgestovisit) te->mark = 2; /* no edges, done with that one */ else te->mark = 1; /* under investigation */ continue; } /* oh no, we found a cycle */ /* find start of cycle node (<0) */ for (j = todo.count - 1; j >= 0; j--) if (todo.elements[j] == -i) break; assert(j >= 0); cycstart = j; /* build te/edge chain */ k = cycstart; for (j = k; j < todo.count; j++) if (todo.elements[j] < 0) todo.elements[k++] = -todo.elements[j]; cycel = k - cycstart; assert(cycel > 1); /* make room for edges, two extra element for cycle loop + terminating 0 */ while (todo.count < cycstart + 2 * cycel + 2) queue_push(&todo, 0); cycle = todo.elements + cycstart; cycle[cycel] = i; /* close the loop */ cycle[2 * cycel + 1] = 0; /* terminator */ for (k = cycel; k > 0; k--) { cycle[k * 2] = cycle[k]; te = od.tes + cycle[k - 1]; assert(te->mark == 1); te->mark = 0; /* reset investigation marker */ /* printf("searching for edge from %d to %d\n", cycle[k - 1], cycle[k]); */ for (j = te->edges; od.edgedata[j]; j += 2) if (od.edgedata[j] == cycle[k]) break; assert(od.edgedata[j]); cycle[k * 2 - 1] = j; } /* now cycle looks like this: */ /* te1 edge te2 edge te3 ... teN edge te1 0 */ breakcycle(&od, cycle); /* restart with start of cycle */ todo.count = cycstart + 1; } POOL_DEBUG(SOLV_DEBUG_STATS, "cycles broken: %d\n", od.ncycles); POOL_DEBUG(SOLV_DEBUG_STATS, "cycle breaking took %d ms\n", solv_timems(now)); now = solv_timems(0); /* now go through all broken cycles and create cycle edges to help the ordering */ for (i = od.cycles.count - 4; i >= 0; i -= 4) { if (od.cycles.elements[i + 2] >= TYPE_REQ) addcycleedges(&od, od.cyclesdata.elements + od.cycles.elements[i], &todo); } for (i = od.cycles.count - 4; i >= 0; i -= 4) { if (od.cycles.elements[i + 2] < TYPE_REQ) addcycleedges(&od, od.cyclesdata.elements + od.cycles.elements[i], &todo); } POOL_DEBUG(SOLV_DEBUG_STATS, "cycle edge creation took %d ms\n", solv_timems(now)); #if 0 dump_tes(&od); #endif /* all edges are finally set up and there are no cycles, now the easy part. * Create an ordered transaction */ now = solv_timems(0); /* first invert all edges */ for (i = 1, te = od.tes + i; i < numte; i++, te++) te->mark = 1; /* term 0 */ for (i = 1, te = od.tes + i; i < numte; i++, te++) { for (j = te->edges; od.edgedata[j]; j += 2) { if ((od.edgedata[j + 1] & TYPE_BROKEN) != 0) continue; od.tes[od.edgedata[j]].mark++; } } j = 1; for (i = 1, te = od.tes + i; i < numte; i++, te++) { te->mark += j; j = te->mark; } POOL_DEBUG(SOLV_DEBUG_STATS, "invedge space: %d\n", j + 1); od.invedgedata = solv_calloc(j + 1, sizeof(Id)); for (i = 1, te = od.tes + i; i < numte; i++, te++) { for (j = te->edges; od.edgedata[j]; j += 2) { if ((od.edgedata[j + 1] & TYPE_BROKEN) != 0) continue; od.invedgedata[--od.tes[od.edgedata[j]].mark] = i; } } for (i = 1, te = od.tes + i; i < numte; i++, te++) te->edges = te->mark; /* edges now points into invedgedata */ od.edgedata = solv_free(od.edgedata); od.nedgedata = j + 1; /* now the final ordering */ for (i = 1, te = od.tes + i; i < numte; i++, te++) te->mark = 0; for (i = 1, te = od.tes + i; i < numte; i++, te++) for (j = te->edges; od.invedgedata[j]; j++) od.tes[od.invedgedata[j]].mark++; queue_init(&samerepoq); queue_init(&uninstq); queue_empty(&todo); for (i = 1, te = od.tes + i; i < numte; i++, te++) if (te->mark == 0) { if (installed && pool->solvables[te->p].repo == installed) queue_push(&uninstq, i); else queue_push(&todo, i); } assert(todo.count > 0 || uninstq.count > 0); oldcount = tr->count; queue_empty(tr); queue_init(&obsq); lastrepo = 0; lastmedia = 0; temedianr = solv_calloc(numte, sizeof(Id)); for (i = 1; i < numte; i++) { Solvable *s = pool->solvables + od.tes[i].p; if (installed && s->repo == installed) j = 1; else j = solvable_lookup_num(s, SOLVABLE_MEDIANR, 1); temedianr[i] = j; } for (;;) { /* select an TE i */ if (uninstq.count) i = queue_shift(&uninstq); else if (samerepoq.count) i = queue_shift(&samerepoq); else if (todo.count) { /* find next repo/media */ for (j = 0; j < todo.count; j++) { if (!j || temedianr[todo.elements[j]] < lastmedia) { i = j; lastmedia = temedianr[todo.elements[j]]; } } lastrepo = pool->solvables[od.tes[todo.elements[i]].p].repo; /* move all matching TEs to samerepoq */ for (i = j = 0; j < todo.count; j++) { int k = todo.elements[j]; if (temedianr[k] == lastmedia && pool->solvables[od.tes[k].p].repo == lastrepo) queue_push(&samerepoq, k); else todo.elements[i++] = k; } todo.count = i; assert(samerepoq.count); i = queue_shift(&samerepoq); } else break; te = od.tes + i; queue_push(tr, te->p); #if 0 printf("do %s [%d]\n", pool_solvid2str(pool, te->p), temedianr[i]); #endif s = pool->solvables + te->p; for (j = te->edges; od.invedgedata[j]; j++) { struct _TransactionElement *te2 = od.tes + od.invedgedata[j]; assert(te2->mark > 0); if (--te2->mark == 0) { Solvable *s = pool->solvables + te2->p; #if 0 printf("free %s [%d]\n", pool_solvid2str(pool, te2->p), temedianr[od.invedgedata[j]]); #endif if (installed && s->repo == installed) queue_push(&uninstq, od.invedgedata[j]); else if (s->repo == lastrepo && temedianr[od.invedgedata[j]] == lastmedia) queue_push(&samerepoq, od.invedgedata[j]); else queue_push(&todo, od.invedgedata[j]); } } } solv_free(temedianr); queue_free(&todo); queue_free(&samerepoq); queue_free(&uninstq); queue_free(&obsq); for (i = 1, te = od.tes + i; i < numte; i++, te++) assert(te->mark == 0); /* add back obsoleted packages */ transaction_add_obsoleted(trans); assert(tr->count == oldcount); POOL_DEBUG(SOLV_DEBUG_STATS, "creating new transaction took %d ms\n", solv_timems(now)); POOL_DEBUG(SOLV_DEBUG_STATS, "transaction ordering took %d ms\n", solv_timems(start)); if ((flags & (SOLVER_TRANSACTION_KEEP_ORDERDATA | SOLVER_TRANSACTION_KEEP_ORDERCYCLES)) != 0) { struct _TransactionOrderdata *tod; trans->orderdata = tod = solv_calloc(1, sizeof(*trans->orderdata)); if ((flags & SOLVER_TRANSACTION_KEEP_ORDERCYCLES) != 0) { Queue *cycles = tod->cycles = solv_calloc(1, sizeof(Queue)); queue_init_clone(cycles, &od.cyclesdata); /* map from tes to packages */ for (i = 0; i < cycles->count; i++) if (cycles->elements[i]) cycles->elements[i] = od.tes[cycles->elements[i]].p; queue_insertn(cycles, cycles->count, od.cycles.count, od.cycles.elements); queue_push(cycles, od.cycles.count / 4); } if ((flags & SOLVER_TRANSACTION_KEEP_ORDERDATA) != 0) { tod->tes = od.tes; tod->ntes = numte; tod->invedgedata = od.invedgedata; tod->ninvedgedata = od.nedgedata; od.tes = 0; od.invedgedata = 0; } } solv_free(od.tes); solv_free(od.invedgedata); queue_free(&od.cycles); queue_free(&od.cyclesdata); } int transaction_order_add_choices(Transaction *trans, Id chosen, Queue *choices) { int i, j; struct _TransactionOrderdata *od = trans->orderdata; struct _TransactionElement *te; if (!od) return choices->count; if (!chosen) { /* initialization step */ for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) te->mark = 0; for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) { for (j = te->edges; od->invedgedata[j]; j++) od->tes[od->invedgedata[j]].mark++; } for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) if (!te->mark) queue_push(choices, te->p); return choices->count; } for (i = 1, te = od->tes + i; i < od->ntes; i++, te++) if (te->p == chosen) break; if (i == od->ntes) return choices->count; if (te->mark > 0) { /* hey! out-of-order installation! */ te->mark = -1; } for (j = te->edges; od->invedgedata[j]; j++) { te = od->tes + od->invedgedata[j]; assert(te->mark > 0 || te->mark == -1); if (te->mark > 0 && --te->mark == 0) queue_push(choices, te->p); } return choices->count; } void transaction_add_obsoleted(Transaction *trans) { Pool *pool = trans->pool; Repo *installed = pool->installed; Id p; Solvable *s; int i, j, k, max; Map done; Queue obsq, *steps; if (!installed || !trans->steps.count) return; /* calculate upper bound */ max = 0; FOR_REPO_SOLVABLES(installed, p, s) if (MAPTST(&trans->transactsmap, p)) max++; if (!max) return; /* make room */ steps = &trans->steps; queue_insertn(steps, 0, max, 0); /* now add em */ map_init(&done, installed->end - installed->start); queue_init(&obsq); for (j = 0, i = max; i < steps->count; i++) { p = trans->steps.elements[i]; if (pool->solvables[p].repo == installed) { if (!trans->transaction_installed[p - pool->installed->start]) trans->steps.elements[j++] = p; continue; } trans->steps.elements[j++] = p; queue_empty(&obsq); transaction_all_obs_pkgs(trans, p, &obsq); for (k = 0; k < obsq.count; k++) { p = obsq.elements[k]; assert(p >= installed->start && p < installed->end); if (!MAPTST(&trans->transactsmap, p)) /* just in case */ continue; if (MAPTST(&done, p - installed->start)) continue; MAPSET(&done, p - installed->start); trans->steps.elements[j++] = p; } } /* free unneeded space */ queue_truncate(steps, j); map_free(&done); queue_free(&obsq); } static void transaction_check_pkg(Transaction *trans, Id tepkg, Id pkg, Map *ins, Map *seen, int onlyprereq, Id noconfpkg, int depth) { Pool *pool = trans->pool; Id p, pp; Solvable *s; int good; if (MAPTST(seen, pkg)) return; MAPSET(seen, pkg); s = pool->solvables + pkg; #if 0 printf("- %*s%c%s\n", depth * 2, "", s->repo == pool->installed ? '-' : '+', pool_solvable2str(pool, s)); #endif if (s->requires) { Id req, *reqp; int inpre = 0; reqp = s->repo->idarraydata + s->requires; while ((req = *reqp++) != 0) { if (req == SOLVABLE_PREREQMARKER) { inpre = 1; continue; } if (onlyprereq && !inpre) continue; if (!strncmp(pool_id2str(pool, req), "rpmlib(", 7)) continue; good = 0; /* first check kept packages, then freshly installed, then not yet uninstalled */ FOR_PROVIDES(p, pp, req) { if (!MAPTST(ins, p)) continue; if (MAPTST(&trans->transactsmap, p)) continue; good++; transaction_check_pkg(trans, tepkg, p, ins, seen, 0, noconfpkg, depth + 1); } if (!good) { FOR_PROVIDES(p, pp, req) { if (!MAPTST(ins, p)) continue; if (pool->solvables[p].repo == pool->installed) continue; good++; transaction_check_pkg(trans, tepkg, p, ins, seen, 0, noconfpkg, depth + 1); } } if (!good) { FOR_PROVIDES(p, pp, req) { if (!MAPTST(ins, p)) continue; good++; transaction_check_pkg(trans, tepkg, p, ins, seen, 0, noconfpkg, depth + 1); } } if (!good) { POOL_DEBUG(SOLV_DEBUG_RESULT, " %c%s: nothing provides %s needed by %c%s\n", pool->solvables[tepkg].repo == pool->installed ? '-' : '+', pool_solvid2str(pool, tepkg), pool_dep2str(pool, req), s->repo == pool->installed ? '-' : '+', pool_solvable2str(pool, s)); } } } } void transaction_check_order(Transaction *trans) { Pool *pool = trans->pool; Solvable *s; Id p, lastins; Map ins, seen; int i; POOL_DEBUG(SOLV_DEBUG_RESULT, "\nchecking transaction order...\n"); map_init(&ins, pool->nsolvables); map_init(&seen, pool->nsolvables); if (pool->installed) { FOR_REPO_SOLVABLES(pool->installed, p, s) MAPSET(&ins, p); } lastins = 0; for (i = 0; i < trans->steps.count; i++) { p = trans->steps.elements[i]; s = pool->solvables + p; if (s->repo != pool->installed) lastins = p; if (s->repo != pool->installed) MAPSET(&ins, p); if (havescripts(pool, p)) { MAPZERO(&seen); transaction_check_pkg(trans, p, p, &ins, &seen, 1, lastins, 0); } if (s->repo == pool->installed) MAPCLR(&ins, p); } map_free(&seen); map_free(&ins); POOL_DEBUG(SOLV_DEBUG_RESULT, "transaction order check done.\n"); } void transaction_order_get_cycleids(Transaction *trans, Queue *q, int minseverity) { struct _TransactionOrderdata *od = trans->orderdata; Queue *cq; int i, cid, ncycles; queue_empty(q); if (!od || !od->cycles || !od->cycles->count) return; cq = od->cycles; ncycles = cq->elements[cq->count - 1]; i = cq->count - 1 - ncycles * 4; for (cid = 1; cid <= ncycles; cid++, i += 4) { if (minseverity) { int cmin = cq->elements[i + 3] & 0xffff; int cmax = (cq->elements[i + 3] >> 16) & 0xffff; if (minseverity >= SOLVER_ORDERCYCLE_NORMAL && cmin < TYPE_REQ) continue; if (minseverity >= SOLVER_ORDERCYCLE_CRITICAL && (cmax & TYPE_PREREQ) == 0) continue; } queue_push(q, cid); } } int transaction_order_get_cycle(Transaction *trans, Id cid, Queue *q) { struct _TransactionOrderdata *od = trans->orderdata; Queue *cq; int cmin, cmax, severity; int ncycles; queue_empty(q); if (!od || !od->cycles || !od->cycles->count) return SOLVER_ORDERCYCLE_HARMLESS; cq = od->cycles; ncycles = cq->elements[cq->count - 1]; if (cid < 1 || cid > ncycles) return SOLVER_ORDERCYCLE_HARMLESS; cid = cq->count - 1 - 4 * (ncycles - cid + 1); cmin = cq->elements[cid + 3] & 0xffff; cmax = (cq->elements[cid + 3] >> 16) & 0xffff; if (cmin < TYPE_REQ) severity = SOLVER_ORDERCYCLE_HARMLESS; else if ((cmax & TYPE_PREREQ) == 0) severity = SOLVER_ORDERCYCLE_NORMAL; else severity = SOLVER_ORDERCYCLE_CRITICAL; if (q) queue_insertn(q, 0, cq->elements[cid + 1], cq->elements + cq->elements[cid]); return severity; }