/* * Copyright (c) 2008, 2011 Mark Kettenis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pciaccess.h" #include "pciaccess_private.h" /* * This should allow for 16 domains, which should cover everything * except perhaps the really big fridge-sized sparc64 server machines * that are unlikely to have any graphics hardware in them. */ static int pcifd[16]; static int ndomains; static int aperturefd = -1; static int pci_read(int domain, int bus, int dev, int func, uint32_t reg, uint32_t *val) { struct pci_io io; int err; bzero(&io, sizeof(io)); io.pi_sel.pc_bus = bus; io.pi_sel.pc_dev = dev; io.pi_sel.pc_func = func; io.pi_reg = reg; io.pi_width = 4; err = ioctl(pcifd[domain], PCIOCREAD, &io); if (err) return (err); *val = io.pi_data; return 0; } static int pci_write(int domain, int bus, int dev, int func, uint32_t reg, uint32_t val) { struct pci_io io; bzero(&io, sizeof(io)); io.pi_sel.pc_bus = bus; io.pi_sel.pc_dev = dev; io.pi_sel.pc_func = func; io.pi_reg = reg; io.pi_width = 4; io.pi_data = val; return ioctl(pcifd[domain], PCIOCWRITE, &io); } /** * Read a VGA ROM * */ static int pci_device_openbsd_read_rom(struct pci_device *device, void *buffer) { struct pci_device_private *priv = (struct pci_device_private *)device; unsigned char *bios; pciaddr_t rom_base; pciaddr_t rom_size; u_int32_t csr, rom; int pci_rom, domain, bus, dev, func; domain = device->domain; if (domain < 0 || domain >= ndomains) return ENXIO; bus = device->bus; dev = device->dev; func = device->func; if (aperturefd == -1) return ENOSYS; if (priv->base.rom_size == 0) { #if defined(__alpha__) || defined(__amd64__) || defined(__i386__) if ((device->device_class & 0x00ffff00) == ((PCI_CLASS_DISPLAY << 16) | (PCI_SUBCLASS_DISPLAY_VGA << 8))) { rom_base = 0xc0000; rom_size = 0x10000; pci_rom = 0; } else #endif return ENOSYS; } else { rom_base = priv->rom_base; rom_size = priv->base.rom_size; pci_rom = 1; pci_read(domain, bus, dev, func, PCI_COMMAND_STATUS_REG, &csr); pci_write(domain, bus, dev, func, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MEM_ENABLE); pci_read(domain, bus, dev, func, PCI_ROM_REG, &rom); pci_write(domain, bus, dev, func, PCI_ROM_REG, rom | PCI_ROM_ENABLE); } bios = mmap(NULL, rom_size, PROT_READ, MAP_SHARED, aperturefd, (off_t)rom_base); if (bios == MAP_FAILED) return errno; memcpy(buffer, bios, rom_size); munmap(bios, rom_size); if (pci_rom) { /* Restore PCI config space */ pci_write(domain, bus, dev, func, PCI_ROM_REG, rom); pci_write(domain, bus, dev, func, PCI_COMMAND_STATUS_REG, csr); } return 0; } static int pci_nfuncs(int domain, int bus, int dev) { uint32_t hdr; if (domain < 0 || domain >= ndomains) return ENXIO; if (pci_read(domain, bus, dev, 0, PCI_BHLC_REG, &hdr) != 0) return -1; return (PCI_HDRTYPE_MULTIFN(hdr) ? 8 : 1); } static int pci_device_openbsd_map_range(struct pci_device *dev, struct pci_device_mapping *map) { struct mem_range_desc mr; struct mem_range_op mo; int prot = PROT_READ; if (map->flags & PCI_DEV_MAP_FLAG_WRITABLE) prot |= PROT_WRITE; map->memory = mmap(NULL, map->size, prot, MAP_SHARED, aperturefd, map->base); if (map->memory == MAP_FAILED) return errno; #if defined(__i386__) || defined(__amd64__) /* No need to set an MTRR if it's the default mode. */ if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) || (map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE)) { mr.mr_base = map->base; mr.mr_len = map->size; mr.mr_flags = 0; if (map->flags & PCI_DEV_MAP_FLAG_CACHABLE) mr.mr_flags |= MDF_WRITEBACK; if (map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE) mr.mr_flags |= MDF_WRITECOMBINE; strlcpy(mr.mr_owner, "pciaccess", sizeof(mr.mr_owner)); mo.mo_desc = &mr; mo.mo_arg[0] = MEMRANGE_SET_UPDATE; if (ioctl(aperturefd, MEMRANGE_SET, &mo)) (void)fprintf(stderr, "mtrr set failed: %s\n", strerror(errno)); } #endif return 0; } static int pci_device_openbsd_unmap_range(struct pci_device *dev, struct pci_device_mapping *map) { #if defined(__i386__) || defined(__amd64__) struct mem_range_desc mr; struct mem_range_op mo; if ((map->flags & PCI_DEV_MAP_FLAG_CACHABLE) || (map->flags & PCI_DEV_MAP_FLAG_WRITE_COMBINE)) { mr.mr_base = map->base; mr.mr_len = map->size; mr.mr_flags = MDF_UNCACHEABLE; strlcpy(mr.mr_owner, "pciaccess", sizeof(mr.mr_owner)); mo.mo_desc = &mr; mo.mo_arg[0] = MEMRANGE_SET_REMOVE; (void)ioctl(aperturefd, MEMRANGE_SET, &mo); } #endif return pci_device_generic_unmap_range(dev, map); } static int pci_device_openbsd_read(struct pci_device *dev, void *data, pciaddr_t offset, pciaddr_t size, pciaddr_t *bytes_read) { struct pci_io io; io.pi_sel.pc_bus = dev->bus; io.pi_sel.pc_dev = dev->dev; io.pi_sel.pc_func = dev->func; *bytes_read = 0; while (size > 0) { int toread = MIN(size, 4 - (offset & 0x3)); io.pi_reg = (offset & ~0x3); io.pi_width = 4; if (ioctl(pcifd[dev->domain], PCIOCREAD, &io) == -1) return errno; io.pi_data = htole32(io.pi_data); io.pi_data >>= ((offset & 0x3) * 8); memcpy(data, &io.pi_data, toread); offset += toread; data = (char *)data + toread; size -= toread; *bytes_read += toread; } return 0; } static int pci_device_openbsd_write(struct pci_device *dev, const void *data, pciaddr_t offset, pciaddr_t size, pciaddr_t *bytes_written) { struct pci_io io; if ((offset % 4) != 0 || (size % 4) != 0) return EINVAL; io.pi_sel.pc_bus = dev->bus; io.pi_sel.pc_dev = dev->dev; io.pi_sel.pc_func = dev->func; *bytes_written = 0; while (size > 0) { io.pi_reg = offset; io.pi_width = 4; memcpy(&io.pi_data, data, 4); if (ioctl(pcifd[dev->domain], PCIOCWRITE, &io) == -1) return errno; offset += 4; data = (char *)data + 4; size -= 4; *bytes_written += 4; } return 0; } static void pci_system_openbsd_destroy(void) { int domain; for (domain = 0; domain < ndomains; domain++) close(pcifd[domain]); ndomains = 0; } static int pci_device_openbsd_probe(struct pci_device *device) { struct pci_device_private *priv = (struct pci_device_private *)device; struct pci_mem_region *region; uint64_t reg64, size64; uint32_t bar, reg, size; int domain, bus, dev, func, err; domain = device->domain; bus = device->bus; dev = device->dev; func = device->func; err = pci_read(domain, bus, dev, func, PCI_BHLC_REG, ®); if (err) return err; priv->header_type = PCI_HDRTYPE_TYPE(reg); if (priv->header_type != 0) return 0; region = device->regions; for (bar = PCI_MAPREG_START; bar < PCI_MAPREG_END; bar += sizeof(uint32_t), region++) { err = pci_read(domain, bus, dev, func, bar, ®); if (err) return err; /* Probe the size of the region. */ err = pci_write(domain, bus, dev, func, bar, ~0); if (err) return err; pci_read(domain, bus, dev, func, bar, &size); pci_write(domain, bus, dev, func, bar, reg); if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) { region->is_IO = 1; region->base_addr = PCI_MAPREG_IO_ADDR(reg); region->size = PCI_MAPREG_IO_SIZE(size); } else { if (PCI_MAPREG_MEM_PREFETCHABLE(reg)) region->is_prefetchable = 1; switch(PCI_MAPREG_MEM_TYPE(reg)) { case PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_MEM_TYPE_32BIT_1M: region->base_addr = PCI_MAPREG_MEM_ADDR(reg); region->size = PCI_MAPREG_MEM_SIZE(size); break; case PCI_MAPREG_MEM_TYPE_64BIT: region->is_64 = 1; reg64 = reg; size64 = size; bar += sizeof(uint32_t); err = pci_read(domain, bus, dev, func, bar, ®); if (err) return err; reg64 |= (uint64_t)reg << 32; err = pci_write(domain, bus, dev, func, bar, ~0); if (err) return err; pci_read(domain, bus, dev, func, bar, &size); pci_write(domain, bus, dev, func, bar, reg64 >> 32); size64 |= (uint64_t)size << 32; region->base_addr = PCI_MAPREG_MEM64_ADDR(reg64); region->size = PCI_MAPREG_MEM64_SIZE(size64); region++; break; } } } /* Probe expansion ROM if present */ err = pci_read(domain, bus, dev, func, PCI_ROM_REG, ®); if (err) return err; if (reg != 0) { err = pci_write(domain, bus, dev, func, PCI_ROM_REG, ~PCI_ROM_ENABLE); if (err) return err; pci_read(domain, bus, dev, func, PCI_ROM_REG, &size); pci_write(domain, bus, dev, func, PCI_ROM_REG, reg); if (PCI_ROM_ADDR(reg) != 0) { priv->rom_base = PCI_ROM_ADDR(reg); device->rom_size = PCI_ROM_SIZE(size); } } return 0; } #if defined(__i386__) || defined(__amd64__) #include #include #endif static struct pci_io_handle * pci_device_openbsd_open_legacy_io(struct pci_io_handle *ret, struct pci_device *dev, pciaddr_t base, pciaddr_t size) { #if defined(__i386__) struct i386_iopl_args ia; ia.iopl = 1; if (sysarch(I386_IOPL, &ia)) return NULL; ret->base = base; ret->size = size; return ret; #elif defined(__amd64__) struct amd64_iopl_args ia; ia.iopl = 1; if (sysarch(AMD64_IOPL, &ia)) return NULL; ret->base = base; ret->size = size; return ret; #elif defined(PCI_MAGIC_IO_RANGE) ret->memory = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, aperturefd, PCI_MAGIC_IO_RANGE + base); if (ret->memory == MAP_FAILED) return NULL; ret->base = base; ret->size = size; return ret; #else return NULL; #endif } static uint32_t pci_device_openbsd_read32(struct pci_io_handle *handle, uint32_t reg) { #if defined(__i386__) || defined(__amd64__) return inl(handle->base + reg); #else return *(uint32_t *)((uintptr_t)handle->memory + reg); #endif } static uint16_t pci_device_openbsd_read16(struct pci_io_handle *handle, uint32_t reg) { #if defined(__i386__) || defined(__amd64__) return inw(handle->base + reg); #else return *(uint16_t *)((uintptr_t)handle->memory + reg); #endif } static uint8_t pci_device_openbsd_read8(struct pci_io_handle *handle, uint32_t reg) { #if defined(__i386__) || defined(__amd64__) return inb(handle->base + reg); #else return *(uint8_t *)((uintptr_t)handle->memory + reg); #endif } static void pci_device_openbsd_write32(struct pci_io_handle *handle, uint32_t reg, uint32_t data) { #if defined(__i386__) || defined(__amd64__) outl(handle->base + reg, data); #else *(uint16_t *)((uintptr_t)handle->memory + reg) = data; #endif } static void pci_device_openbsd_write16(struct pci_io_handle *handle, uint32_t reg, uint16_t data) { #if defined(__i386__) || defined(__amd64__) outw(handle->base + reg, data); #else *(uint8_t *)((uintptr_t)handle->memory + reg) = data; #endif } static void pci_device_openbsd_write8(struct pci_io_handle *handle, uint32_t reg, uint8_t data) { #if defined(__i386__) || defined(__amd64__) outb(handle->base + reg, data); #else *(uint32_t *)((uintptr_t)handle->memory + reg) = data; #endif } static int pci_device_openbsd_map_legacy(struct pci_device *dev, pciaddr_t base, pciaddr_t size, unsigned map_flags, void **addr) { struct pci_device_mapping map; int err; map.base = base; map.size = size; map.flags = map_flags; map.memory = NULL; err = pci_device_openbsd_map_range(dev, &map); *addr = map.memory; return err; } static int pci_device_openbsd_unmap_legacy(struct pci_device *dev, void *addr, pciaddr_t size) { struct pci_device_mapping map; map.memory = addr; map.size = size; map.flags = 0; return pci_device_openbsd_unmap_range(dev, &map); } static const struct pci_system_methods openbsd_pci_methods = { pci_system_openbsd_destroy, NULL, pci_device_openbsd_read_rom, pci_device_openbsd_probe, pci_device_openbsd_map_range, pci_device_openbsd_unmap_range, pci_device_openbsd_read, pci_device_openbsd_write, pci_fill_capabilities_generic, NULL, NULL, NULL, NULL, pci_device_openbsd_open_legacy_io, NULL, pci_device_openbsd_read32, pci_device_openbsd_read16, pci_device_openbsd_read8, pci_device_openbsd_write32, pci_device_openbsd_write16, pci_device_openbsd_write8, pci_device_openbsd_map_legacy, pci_device_openbsd_unmap_legacy }; int pci_system_openbsd_create(void) { struct pci_device_private *device; int domain, bus, dev, func, ndevs, nfuncs; char path[MAXPATHLEN]; uint32_t reg; if (ndomains > 0) return 0; for (domain = 0; domain < sizeof(pcifd) / sizeof(pcifd[0]); domain++) { snprintf(path, sizeof(path), "/dev/pci%d", domain); pcifd[domain] = open(path, O_RDWR | O_CLOEXEC); if (pcifd[domain] == -1) break; ndomains++; } if (ndomains == 0) return ENXIO; pci_sys = calloc(1, sizeof(struct pci_system)); if (pci_sys == NULL) { for (domain = 0; domain < ndomains; domain++) close(pcifd[domain]); ndomains = 0; return ENOMEM; } pci_sys->methods = &openbsd_pci_methods; ndevs = 0; for (domain = 0; domain < ndomains; domain++) { for (bus = 0; bus < 256; bus++) { for (dev = 0; dev < 32; dev++) { nfuncs = pci_nfuncs(domain, bus, dev); for (func = 0; func < nfuncs; func++) { if (pci_read(domain, bus, dev, func, PCI_ID_REG, ®) != 0) continue; if (PCI_VENDOR(reg) == PCI_VENDOR_INVALID || PCI_VENDOR(reg) == 0) continue; ndevs++; } } } } pci_sys->num_devices = ndevs; pci_sys->devices = calloc(ndevs, sizeof(struct pci_device_private)); if (pci_sys->devices == NULL) { free(pci_sys); pci_sys = NULL; for (domain = 0; domain < ndomains; domain++) close(pcifd[domain]); ndomains = 0; return ENOMEM; } device = pci_sys->devices; for (domain = 0; domain < ndomains; domain++) { for (bus = 0; bus < 256; bus++) { for (dev = 0; dev < 32; dev++) { nfuncs = pci_nfuncs(domain, bus, dev); for (func = 0; func < nfuncs; func++) { if (pci_read(domain, bus, dev, func, PCI_ID_REG, ®) != 0) continue; if (PCI_VENDOR(reg) == PCI_VENDOR_INVALID || PCI_VENDOR(reg) == 0) continue; device->base.domain = domain; device->base.bus = bus; device->base.dev = dev; device->base.func = func; device->base.vendor_id = PCI_VENDOR(reg); device->base.device_id = PCI_PRODUCT(reg); if (pci_read(domain, bus, dev, func, PCI_CLASS_REG, ®) != 0) continue; device->base.device_class = PCI_INTERFACE(reg) | PCI_CLASS(reg) << 16 | PCI_SUBCLASS(reg) << 8; device->base.revision = PCI_REVISION(reg); if (pci_read(domain, bus, dev, func, PCI_SUBVEND_0, ®) != 0) continue; device->base.subvendor_id = PCI_VENDOR(reg); device->base.subdevice_id = PCI_PRODUCT(reg); device->base.vgaarb_rsrc = VGA_ARB_RSRC_LEGACY_IO | VGA_ARB_RSRC_LEGACY_MEM; device++; } } } } return 0; } void pci_system_openbsd_init_dev_mem(int fd) { aperturefd = fd; } int pci_device_vgaarb_init(void) { struct pci_device *dev = pci_sys->vga_target; struct pci_device_iterator *iter; struct pci_id_match vga_match = { PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY, PCI_MATCH_ANY, (PCI_CLASS_DISPLAY << 16) | (PCI_SUBCLASS_DISPLAY_VGA << 8), 0x00ffff00 }; struct pci_vga pv; int err; pv.pv_sel.pc_bus = 0; pv.pv_sel.pc_dev = 0; pv.pv_sel.pc_func = 0; err = ioctl(pcifd[0], PCIOCGETVGA, &pv); if (err) return err; pci_sys->vga_target = pci_device_find_by_slot(0, pv.pv_sel.pc_bus, pv.pv_sel.pc_dev, pv.pv_sel.pc_func); /* Count the number of VGA devices in domain 0. */ iter = pci_id_match_iterator_create(&vga_match); if (iter == NULL) return -1; pci_sys->vga_count = 0; while ((dev = pci_device_next(iter)) != NULL) { if (dev->domain == 0) pci_sys->vga_count++; } pci_iterator_destroy(iter); return 0; } void pci_device_vgaarb_fini(void) { struct pci_device *dev; struct pci_vga pv; if (pci_sys == NULL) return; dev = pci_sys->vga_target; if (dev == NULL) return; pv.pv_sel.pc_bus = dev->bus; pv.pv_sel.pc_dev = dev->dev; pv.pv_sel.pc_func = dev->func; pv.pv_lock = PCI_VGA_UNLOCK; ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv); } int pci_device_vgaarb_set_target(struct pci_device *dev) { pci_sys->vga_target = dev; return (0); } int pci_device_vgaarb_lock(void) { struct pci_device *dev = pci_sys->vga_target; struct pci_vga pv; if (dev == NULL) return -1; #if 0 if (dev->vgaarb_rsrc == 0 || pci_sys->vga_count == 1) return 0; #else if (pci_sys->vga_count == 1) return 0; #endif pv.pv_sel.pc_bus = dev->bus; pv.pv_sel.pc_dev = dev->dev; pv.pv_sel.pc_func = dev->func; pv.pv_lock = PCI_VGA_LOCK; return ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv); } int pci_device_vgaarb_unlock(void) { struct pci_device *dev = pci_sys->vga_target; struct pci_vga pv; if (dev == NULL) return -1; #if 0 if (dev->vgaarb_rsrc == 0 || pci_sys->vga_count == 1) return 0; #else if (pci_sys->vga_count == 1) return 0; #endif pv.pv_sel.pc_bus = dev->bus; pv.pv_sel.pc_dev = dev->dev; pv.pv_sel.pc_func = dev->func; pv.pv_lock = PCI_VGA_UNLOCK; return ioctl(pcifd[dev->domain], PCIOCSETVGA, &pv); } int pci_device_vgaarb_get_info(struct pci_device *dev, int *vga_count, int *rsrc_decodes) { *vga_count = pci_sys->vga_count; if (dev) *rsrc_decodes = dev->vgaarb_rsrc; return 0; } int pci_device_vgaarb_decodes(int rsrc_decodes) { struct pci_device *dev = pci_sys->vga_target; if (dev == NULL) return -1; dev->vgaarb_rsrc = rsrc_decodes; return 0; }