1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_modular.h"
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <atomic>
#include <limits>
#include <queue>
#include <utility>
#include <vector>
#include "lib/jxl/aux_out.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/padded_bytes.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/compressed_dc.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/enc_bit_writer.h"
#include "lib/jxl/enc_cluster.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_patch_dictionary.h"
#include "lib/jxl/enc_quant_weights.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/gaborish.h"
#include "lib/jxl/modular/encoding/context_predict.h"
#include "lib/jxl/modular/encoding/enc_debug_tree.h"
#include "lib/jxl/modular/encoding/enc_encoding.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/modular/encoding/ma_common.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/options.h"
#include "lib/jxl/modular/transform/enc_transform.h"
#include "lib/jxl/toc.h"
namespace jxl {
namespace {
// Squeeze default quantization factors
// these quantization factors are for -Q 50 (other qualities simply scale the
// factors; things are rounded down and obviously cannot get below 1)
static const float squeeze_quality_factor =
0.35; // for easy tweaking of the quality range (decrease this number for
// higher quality)
static const float squeeze_luma_factor =
1.1; // for easy tweaking of the balance between luma (or anything
// non-chroma) and chroma (decrease this number for higher quality
// luma)
static const float squeeze_quality_factor_xyb = 2.4f;
static const float squeeze_xyb_qtable[3][16] = {
{163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16,
0.08, 0.04, 0.02, 0.01, 0.005}, // Y
{1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5,
0.5}, // X
{2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5,
0.5}, // B-Y
};
static const float squeeze_luma_qtable[16] = {
163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28,
0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 0.005};
// for 8-bit input, the range of YCoCg chroma is -255..255 so basically this
// does 4:2:0 subsampling (two most fine grained layers get quantized away)
static const float squeeze_chroma_qtable[16] = {
1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5};
// `cutoffs` must be sorted.
Tree MakeFixedTree(int property, const std::vector<int32_t>& cutoffs,
Predictor pred, size_t num_pixels) {
size_t log_px = CeilLog2Nonzero(num_pixels);
size_t min_gap = 0;
// Reduce fixed tree height when encoding small images.
if (log_px < 14) {
min_gap = 8 * (14 - log_px);
}
Tree tree;
struct NodeInfo {
size_t begin, end, pos;
};
std::queue<NodeInfo> q;
// Leaf IDs will be set by roundtrip decoding the tree.
tree.push_back(PropertyDecisionNode::Leaf(pred));
q.push(NodeInfo{0, cutoffs.size(), 0});
while (!q.empty()) {
NodeInfo info = q.front();
q.pop();
if (info.begin + min_gap >= info.end) continue;
uint32_t split = (info.begin + info.end) / 2;
tree[info.pos] =
PropertyDecisionNode::Split(property, cutoffs[split], tree.size());
q.push(NodeInfo{split + 1, info.end, tree.size()});
tree.push_back(PropertyDecisionNode::Leaf(pred));
q.push(NodeInfo{info.begin, split, tree.size()});
tree.push_back(PropertyDecisionNode::Leaf(pred));
}
return tree;
}
Tree PredefinedTree(ModularOptions::TreeKind tree_kind, size_t total_pixels) {
if (tree_kind == ModularOptions::TreeKind::kJpegTranscodeACMeta ||
tree_kind == ModularOptions::TreeKind::kTrivialTreeNoPredictor) {
// All the data is 0, so no need for a fancy tree.
return {PropertyDecisionNode::Leaf(Predictor::Zero)};
}
if (tree_kind == ModularOptions::TreeKind::kFalconACMeta) {
// All the data is 0 except the quant field. TODO(veluca): make that 0 too.
return {PropertyDecisionNode::Leaf(Predictor::Left)};
}
if (tree_kind == ModularOptions::TreeKind::kACMeta) {
// Small image.
if (total_pixels < 1024) {
return {PropertyDecisionNode::Leaf(Predictor::Left)};
}
Tree tree;
// 0: c > 1
tree.push_back(PropertyDecisionNode::Split(0, 1, 1));
// 1: c > 2
tree.push_back(PropertyDecisionNode::Split(0, 2, 3));
// 2: c > 0
tree.push_back(PropertyDecisionNode::Split(0, 0, 5));
// 3: EPF control field (all 0 or 4), top > 0
tree.push_back(PropertyDecisionNode::Split(6, 0, 21));
// 4: ACS+QF, y > 0
tree.push_back(PropertyDecisionNode::Split(2, 0, 7));
// 5: CfL x
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
// 6: CfL b
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
// 7: QF: split according to the left quant value.
tree.push_back(PropertyDecisionNode::Split(7, 5, 9));
// 8: ACS: split in 4 segments (8x8 from 0 to 3, large square 4-5, large
// rectangular 6-11, 8x8 12+), according to previous ACS value.
tree.push_back(PropertyDecisionNode::Split(7, 5, 15));
// QF
tree.push_back(PropertyDecisionNode::Split(7, 11, 11));
tree.push_back(PropertyDecisionNode::Split(7, 3, 13));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
// ACS
tree.push_back(PropertyDecisionNode::Split(7, 11, 17));
tree.push_back(PropertyDecisionNode::Split(7, 3, 19));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
// EPF, left > 0
tree.push_back(PropertyDecisionNode::Split(7, 0, 23));
tree.push_back(PropertyDecisionNode::Split(7, 0, 25));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
return tree;
}
if (tree_kind == ModularOptions::TreeKind::kWPFixedDC) {
std::vector<int32_t> cutoffs = {
-500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
-11, -7, -4, -3, -1, 0, 1, 3, 5, 7, 11,
15, 23, 31, 47, 63, 95, 127, 191, 255, 392, 500};
return MakeFixedTree(kWPProp, cutoffs, Predictor::Weighted, total_pixels);
}
if (tree_kind == ModularOptions::TreeKind::kGradientFixedDC) {
std::vector<int32_t> cutoffs = {
-500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
-11, -7, -4, -3, -1, 0, 1, 3, 5, 7, 11,
15, 23, 31, 47, 63, 95, 127, 191, 255, 392, 500};
return MakeFixedTree(kGradientProp, cutoffs, Predictor::Gradient,
total_pixels);
}
JXL_ABORT("Unreachable");
return {};
}
// Merges the trees in `trees` using nodes that decide on stream_id, as defined
// by `tree_splits`.
void MergeTrees(const std::vector<Tree>& trees,
const std::vector<size_t>& tree_splits, size_t begin,
size_t end, Tree* tree) {
JXL_ASSERT(trees.size() + 1 == tree_splits.size());
JXL_ASSERT(end > begin);
JXL_ASSERT(end <= trees.size());
if (end == begin + 1) {
// Insert the tree, adding the opportune offset to all child nodes.
// This will make the leaf IDs wrong, but subsequent roundtripping will fix
// them.
size_t sz = tree->size();
tree->insert(tree->end(), trees[begin].begin(), trees[begin].end());
for (size_t i = sz; i < tree->size(); i++) {
(*tree)[i].lchild += sz;
(*tree)[i].rchild += sz;
}
return;
}
size_t mid = (begin + end) / 2;
size_t splitval = tree_splits[mid] - 1;
size_t cur = tree->size();
tree->emplace_back(1 /*stream_id*/, splitval, 0, 0, Predictor::Zero, 0, 1);
(*tree)[cur].lchild = tree->size();
MergeTrees(trees, tree_splits, mid, end, tree);
(*tree)[cur].rchild = tree->size();
MergeTrees(trees, tree_splits, begin, mid, tree);
}
void QuantizeChannel(Channel& ch, const int q) {
if (q == 1) return;
for (size_t y = 0; y < ch.plane.ysize(); y++) {
pixel_type* row = ch.plane.Row(y);
for (size_t x = 0; x < ch.plane.xsize(); x++) {
if (row[x] < 0) {
row[x] = -((-row[x] + q / 2) / q) * q;
} else {
row[x] = ((row[x] + q / 2) / q) * q;
}
}
}
}
// convert binary32 float that corresponds to custom [bits]-bit float (with
// [exp_bits] exponent bits) to a [bits]-bit integer representation that should
// fit in pixel_type
Status float_to_int(const float* const row_in, pixel_type* const row_out,
size_t xsize, unsigned int bits, unsigned int exp_bits,
bool fp, double dfactor) {
JXL_ASSERT(sizeof(pixel_type) * 8 >= bits);
if (!fp) {
if (bits > 22) {
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5);
}
} else {
float factor = dfactor;
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f);
}
}
return true;
}
if (bits == 32 && fp) {
JXL_ASSERT(exp_bits == 8);
memcpy((void*)row_out, (const void*)row_in, 4 * xsize);
return true;
}
int exp_bias = (1 << (exp_bits - 1)) - 1;
int max_exp = (1 << exp_bits) - 1;
uint32_t sign = (1u << (bits - 1));
int mant_bits = bits - exp_bits - 1;
int mant_shift = 23 - mant_bits;
for (size_t x = 0; x < xsize; ++x) {
uint32_t f;
memcpy(&f, &row_in[x], 4);
int signbit = (f >> 31);
f &= 0x7fffffff;
if (f == 0) {
row_out[x] = (signbit ? sign : 0);
continue;
}
int exp = (f >> 23) - 127;
if (exp == 128) return JXL_FAILURE("Inf/NaN not allowed");
int mantissa = (f & 0x007fffff);
// broke up the binary32 into its parts, now reassemble into
// arbitrary float
exp += exp_bias;
if (exp < 0) { // will become a subnormal number
// add implicit leading 1 to mantissa
mantissa |= 0x00800000;
if (exp < -mant_bits) {
return JXL_FAILURE(
"Invalid float number: %g cannot be represented with %i "
"exp_bits and %i mant_bits (exp %i)",
row_in[x], exp_bits, mant_bits, exp);
}
mantissa >>= 1 - exp;
exp = 0;
}
// exp should be representable in exp_bits, otherwise input was
// invalid
if (exp > max_exp) return JXL_FAILURE("Invalid float exponent");
if (mantissa & ((1 << mant_shift) - 1)) {
return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x],
mantissa);
}
mantissa >>= mant_shift;
f = (signbit ? sign : 0);
f |= (exp << mant_bits);
f |= mantissa;
row_out[x] = (pixel_type)f;
}
return true;
}
} // namespace
ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
const CompressParams& cparams_orig)
: frame_dim_(frame_header.ToFrameDimensions()), cparams_(cparams_orig) {
size_t num_streams =
ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes);
if (cparams_.IsLossless()) {
switch (cparams_.decoding_speed_tier) {
case 0:
break;
case 1:
cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
break;
case 2: {
cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
cparams_.options.predictor = Predictor::Gradient;
break;
}
case 3: { // LZ77, no Gradient.
cparams_.options.nb_repeats = 0;
cparams_.options.predictor = Predictor::Gradient;
break;
}
default: { // LZ77, no predictor.
cparams_.options.nb_repeats = 0;
cparams_.options.predictor = Predictor::Zero;
break;
}
}
}
if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive &&
cparams_.IsLossless()) {
cparams_.options.tree_kind =
ModularOptions::TreeKind::kTrivialTreeNoPredictor;
cparams_.options.nb_repeats = 0;
}
stream_images_.resize(num_streams);
// use a sensible default if nothing explicit is specified:
// Squeeze for lossy, no squeeze for lossless
if (cparams_.responsive < 0) {
if (cparams_.IsLossless()) {
cparams_.responsive = 0;
} else {
cparams_.responsive = 1;
}
}
if (cparams_.speed_tier > SpeedTier::kWombat) {
cparams_.options.splitting_heuristics_node_threshold = 192;
} else {
cparams_.options.splitting_heuristics_node_threshold = 96;
}
{
// Set properties.
std::vector<uint32_t> prop_order;
if (cparams_.responsive) {
// Properties in order of their likelihood of being useful for Squeeze
// residuals.
prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3};
} else {
// Same, but for the non-Squeeze case.
prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8};
}
switch (cparams_.speed_tier) {
case SpeedTier::kSquirrel:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 8);
cparams_.options.max_property_values = 32;
break;
case SpeedTier::kKitten:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 10);
cparams_.options.max_property_values = 64;
break;
case SpeedTier::kTortoise:
cparams_.options.splitting_heuristics_properties = prop_order;
cparams_.options.max_property_values = 256;
break;
default:
cparams_.options.splitting_heuristics_properties.assign(
prop_order.begin(), prop_order.begin() + 6);
cparams_.options.max_property_values = 16;
break;
}
if (cparams_.speed_tier > SpeedTier::kTortoise) {
// Gradient in previous channels.
for (int i = 0; i < cparams_.options.max_properties; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i * 4 + 3);
}
} else {
// All the extra properties in Tortoise mode.
for (int i = 0; i < cparams_.options.max_properties * 4; i++) {
cparams_.options.splitting_heuristics_properties.push_back(
kNumNonrefProperties + i);
}
}
}
if (cparams_.options.predictor == static_cast<Predictor>(-1)) {
// no explicit predictor(s) given, set a good default
if ((cparams_.speed_tier <= SpeedTier::kTortoise ||
cparams_.modular_mode == false) &&
cparams_.IsLossless() && cparams_.responsive == false) {
// TODO(veluca): allow all predictors that don't break residual
// multipliers in lossy mode.
cparams_.options.predictor = Predictor::Variable;
} else if (cparams_.responsive || cparams_.lossy_palette) {
// zero predictor for Squeeze residues and lossy palette
cparams_.options.predictor = Predictor::Zero;
} else if (!cparams_.IsLossless()) {
// If not responsive and lossy. TODO(veluca): use near_lossless instead?
cparams_.options.predictor = Predictor::Gradient;
} else if (cparams_.speed_tier < SpeedTier::kFalcon) {
// try median and weighted predictor for anything else
cparams_.options.predictor = Predictor::Best;
} else if (cparams_.speed_tier == SpeedTier::kFalcon) {
// just weighted predictor in falcon mode
cparams_.options.predictor = Predictor::Weighted;
} else if (cparams_.speed_tier > SpeedTier::kFalcon) {
// just gradient predictor in thunder mode
cparams_.options.predictor = Predictor::Gradient;
}
} else {
delta_pred_ = cparams_.options.predictor;
if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero;
}
if (!cparams_.IsLossless()) {
if (cparams_.options.predictor == Predictor::Weighted ||
cparams_.options.predictor == Predictor::Variable ||
cparams_.options.predictor == Predictor::Best)
cparams_.options.predictor = Predictor::Zero;
}
tree_splits_.push_back(0);
if (cparams_.modular_mode == false) {
cparams_.options.fast_decode_multiplier = 1.0f;
tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::QuantTable(0).ID(frame_dim_));
tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_));
ac_metadata_size.resize(frame_dim_.num_dc_groups);
extra_dc_precision.resize(frame_dim_.num_dc_groups);
}
tree_splits_.push_back(num_streams);
cparams_.options.max_chan_size = frame_dim_.group_dim;
cparams_.options.group_dim = frame_dim_.group_dim;
// TODO(veluca): figure out how to use different predictor sets per channel.
stream_options_.resize(num_streams, cparams_.options);
}
bool do_transform(Image& image, const Transform& tr,
const weighted::Header& wp_header,
jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
Transform t = tr;
bool did_it = true;
if (force_jxlart) {
if (!t.MetaApply(image)) return false;
} else {
did_it = TransformForward(t, image, wp_header, pool);
}
if (did_it) image.transform.push_back(t);
return did_it;
}
Status ModularFrameEncoder::ComputeEncodingData(
const FrameHeader& frame_header, const ImageMetadata& metadata,
Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels,
PassesEncoderState* JXL_RESTRICT enc_state, const JxlCmsInterface& cms,
ThreadPool* pool, AuxOut* aux_out, bool do_color) {
JXL_DEBUG_V(6, "Computing modular encoding data for frame %s",
frame_header.DebugString().c_str());
if (do_color && frame_header.loop_filter.gab) {
GaborishInverse(color, 0.9908511000000001f, pool);
}
if (do_color && metadata.bit_depth.bits_per_sample <= 16 &&
cparams_.speed_tier < SpeedTier::kCheetah &&
cparams_.decoding_speed_tier < 2) {
FindBestPatchDictionary(*color, enc_state, cms, nullptr, aux_out,
cparams_.color_transform == ColorTransform::kXYB);
PatchDictionaryEncoder::SubtractFrom(
enc_state->shared.image_features.patches, color);
}
// Convert ImageBundle to modular Image object
const size_t xsize = frame_dim_.xsize;
const size_t ysize = frame_dim_.ysize;
int nb_chans = 3;
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone) {
nb_chans = 1;
}
if (!do_color) nb_chans = 0;
nb_chans += extra_channels.size();
bool fp = metadata.bit_depth.floating_point_sample &&
cparams_.color_transform != ColorTransform::kXYB;
// bits_per_sample is just metadata for XYB images.
if (metadata.bit_depth.bits_per_sample >= 32 && do_color &&
cparams_.color_transform != ColorTransform::kXYB) {
if (metadata.bit_depth.bits_per_sample == 32 && fp == false) {
return JXL_FAILURE("uint32_t not supported in enc_modular");
} else if (metadata.bit_depth.bits_per_sample > 32) {
return JXL_FAILURE("bits_per_sample > 32 not supported");
}
}
// in the non-float case, there is an implicit 0 sign bit
int max_bitdepth =
do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0;
Image& gi = stream_images_[0];
gi = Image(xsize, ysize, metadata.bit_depth.bits_per_sample, nb_chans);
int c = 0;
if (cparams_.color_transform == ColorTransform::kXYB &&
cparams_.modular_mode == true) {
float enc_factors[3] = {32768.0f, 2048.0f, 2048.0f};
if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) {
// quantize XYB here and then treat it as a lossless image
enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance);
enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
cparams_.butteraugli_distance = 0;
}
if (cparams_.manual_xyb_factors.size() == 3) {
DequantMatricesSetCustomDC(&enc_state->shared.matrices,
cparams_.manual_xyb_factors.data());
// TODO(jon): update max_bitdepth in this case
} else {
DequantMatricesSetCustomDC(&enc_state->shared.matrices, enc_factors);
max_bitdepth = 12;
}
}
pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0;
if (do_color) {
for (; c < 3; c++) {
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone &&
c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0))
continue;
int c_out = c;
// XYB is encoded as YX(B-Y)
if (cparams_.color_transform == ColorTransform::kXYB && c < 2)
c_out = 1 - c_out;
double factor = maxval;
if (cparams_.color_transform == ColorTransform::kXYB)
factor = enc_state->shared.matrices.InvDCQuant(c);
if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) {
JXL_ASSERT(!fp);
for (size_t y = 0; y < ysize; ++y) {
const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y);
for (size_t x = 0; x < xsize; ++x) {
row_out[x] = row_in[x] * factor + 0.5f;
row_out[x] -= row_Y[x];
// zero the lsb of B
row_out[x] = row_out[x] / 2 * 2;
}
}
} else {
int bits = metadata.bit_depth.bits_per_sample;
int exp_bits = metadata.bit_depth.exponent_bits_per_sample;
gi.channel[c_out].hshift =
enc_state->shared.frame_header.chroma_subsampling.HShift(c);
gi.channel[c_out].vshift =
enc_state->shared.frame_header.chroma_subsampling.VShift(c);
size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift);
size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift);
gi.channel[c_out].shrink(xsize_shifted, ysize_shifted);
std::atomic<bool> has_error{false};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, ysize_shifted, ThreadPool::NoInit,
[&](const int task, const int thread) {
const size_t y = task;
const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
if (!float_to_int(row_in, row_out, xsize_shifted, bits, exp_bits,
fp, factor)) {
has_error = true;
};
},
"float2int"));
if (has_error) {
return JXL_FAILURE("Error in float to integer conversion");
}
}
}
if (metadata.color_encoding.IsGray() &&
cparams_.color_transform == ColorTransform::kNone)
c = 1;
}
for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) {
const ExtraChannelInfo& eci = metadata.extra_channel_info[ec];
size_t ecups = frame_header.extra_channel_upsampling[ec];
gi.channel[c].shrink(DivCeil(frame_dim_.xsize_upsampled, ecups),
DivCeil(frame_dim_.ysize_upsampled, ecups));
gi.channel[c].hshift = gi.channel[c].vshift =
CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
int bits = eci.bit_depth.bits_per_sample;
int exp_bits = eci.bit_depth.exponent_bits_per_sample;
bool fp = eci.bit_depth.floating_point_sample;
double factor = (fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1));
if (bits + (fp ? 0 : 1) > max_bitdepth) max_bitdepth = bits + (fp ? 0 : 1);
std::atomic<bool> has_error{false};
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, gi.channel[c].plane.ysize(), ThreadPool::NoInit,
[&](const int task, const int thread) {
const size_t y = task;
const float* const JXL_RESTRICT row_in = extra_channels[ec].Row(y);
pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y);
if (!float_to_int(row_in, row_out, gi.channel[c].plane.xsize(), bits,
exp_bits, fp, factor)) {
has_error = true;
};
},
"float2int"));
if (has_error) return JXL_FAILURE("Error in float to integer conversion");
}
JXL_ASSERT(c == nb_chans);
int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32);
if (max_bitdepth > level_max_bitdepth)
return JXL_FAILURE(
"Bitdepth too high for level %i (need %i bits, have only %i in this "
"level)",
cparams_.level, max_bitdepth, level_max_bitdepth);
// Set options and apply transformations
if (cparams_.butteraugli_distance > 0) {
if (cparams_.palette_colors != 0) {
JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms");
}
if (cparams_.color_transform == ColorTransform::kXYB) {
cparams_.channel_colors_pre_transform_percent = 0;
}
cparams_.channel_colors_percent = 0;
cparams_.palette_colors = 0;
cparams_.lossy_palette = false;
}
// if few colors, do all-channel palette before trying channel palette
// Logic is as follows:
// - if you can make a palette with few colors (arbitrary threshold: 200),
// then you can also make channel palettes, but they will just be extra
// signaling cost for almost no benefit
// - if the palette needs more colors, then channel palette might help to
// reduce palette signaling cost
if (cparams_.palette_colors != 0 &&
cparams_.speed_tier < SpeedTier::kFalcon) {
// all-channel palette (e.g. RGBA)
if (gi.channel.size() > 1) {
Transform maybe_palette(TransformId::kPalette);
maybe_palette.begin_c = gi.nb_meta_channels;
maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
maybe_palette.nb_colors =
std::min(std::min(200, (int)(xsize * ysize / 8)),
std::abs(cparams_.palette_colors) / 16);
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette.lossy_palette = false;
do_transform(gi, maybe_palette, weighted::Header(), pool);
}
}
// Global channel palette
if (cparams_.channel_colors_pre_transform_percent > 0 &&
!cparams_.lossy_palette &&
(cparams_.speed_tier <= SpeedTier::kThunder ||
(do_color && metadata.bit_depth.bits_per_sample > 8))) {
// single channel palette (like FLIF's ChannelCompact)
size_t nb_channels = gi.channel.size() - gi.nb_meta_channels;
int orig_bitdepth = max_bitdepth;
max_bitdepth = 0;
for (size_t i = 0; i < nb_channels; i++) {
int32_t min, max;
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
int64_t colors = max - min + 1;
JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
Transform maybe_palette_1(TransformId::kPalette);
maybe_palette_1.begin_c = i + gi.nb_meta_channels;
maybe_palette_1.num_c = 1;
// simple heuristic: if less than X percent of the values in the range
// actually occur, it is probably worth it to do a compaction
// (but only if the channel palette is less than 6% the size of the
// image itself)
maybe_palette_1.nb_colors = std::min(
(int)(xsize * ysize / 16),
(int)(cparams_.channel_colors_pre_transform_percent / 100. * colors));
if (do_transform(gi, maybe_palette_1, weighted::Header(), pool)) {
// effective bit depth is lower, adjust quantization accordingly
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
if (max < maxval) maxval = max;
int ch_bitdepth =
(max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
} else
max_bitdepth = orig_bitdepth;
}
}
// Global palette
if ((cparams_.palette_colors != 0 || cparams_.lossy_palette) &&
cparams_.speed_tier < SpeedTier::kFalcon) {
// all-channel palette (e.g. RGBA)
if (gi.channel.size() - gi.nb_meta_channels > 1) {
Transform maybe_palette(TransformId::kPalette);
maybe_palette.begin_c = gi.nb_meta_channels;
maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
maybe_palette.nb_colors =
std::min((int)(xsize * ysize / 8), std::abs(cparams_.palette_colors));
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette.lossy_palette =
(cparams_.lossy_palette && maybe_palette.num_c == 3);
if (maybe_palette.lossy_palette) {
maybe_palette.predictor = delta_pred_;
}
// TODO(veluca): use a custom weighted header if using the weighted
// predictor.
do_transform(gi, maybe_palette, weighted::Header(), pool,
cparams_.options.zero_tokens);
}
// all-minus-one-channel palette (RGB with separate alpha, or CMY with
// separate K)
if (gi.channel.size() - gi.nb_meta_channels > 3) {
Transform maybe_palette_3(TransformId::kPalette);
maybe_palette_3.begin_c = gi.nb_meta_channels;
maybe_palette_3.num_c = gi.channel.size() - gi.nb_meta_channels - 1;
maybe_palette_3.nb_colors =
std::min((int)(xsize * ysize / 8), std::abs(cparams_.palette_colors));
maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette_3.lossy_palette = cparams_.lossy_palette;
if (maybe_palette_3.lossy_palette) {
maybe_palette_3.predictor = delta_pred_;
}
do_transform(gi, maybe_palette_3, weighted::Header(), pool,
cparams_.options.zero_tokens);
}
}
// don't do an RCT if we're short on bits
if (cparams_.color_transform == ColorTransform::kNone && do_color &&
gi.channel.size() - gi.nb_meta_channels >= 3 &&
max_bitdepth + 1 < level_max_bitdepth) {
if (cparams_.colorspace < 0 &&
(!cparams_.IsLossless() || cparams_.speed_tier > SpeedTier::kHare)) {
Transform ycocg{TransformId::kRCT};
ycocg.rct_type = 6;
ycocg.begin_c = gi.nb_meta_channels;
do_transform(gi, ycocg, weighted::Header(), pool);
max_bitdepth++;
} else if (cparams_.colorspace > 0) {
Transform sg(TransformId::kRCT);
sg.begin_c = gi.nb_meta_channels;
sg.rct_type = cparams_.colorspace;
do_transform(gi, sg, weighted::Header(), pool);
max_bitdepth++;
}
}
// don't do squeeze if we don't have some spare bits
if (cparams_.responsive && !gi.channel.empty() &&
max_bitdepth + 2 < level_max_bitdepth) {
Transform t(TransformId::kSqueeze);
t.squeezes = cparams_.squeezes;
do_transform(gi, t, weighted::Header(), pool);
max_bitdepth += 2;
}
if (max_bitdepth + 1 > level_max_bitdepth) {
// force no group RCTs if we don't have a spare bit
cparams_.colorspace = 0;
}
JXL_ASSERT(max_bitdepth <= level_max_bitdepth);
std::vector<uint32_t> quants;
if (cparams_.butteraugli_distance > 0) {
quants.resize(gi.channel.size(), 1);
float quality = 0.25f * cparams_.butteraugli_distance;
JXL_DEBUG_V(2,
"Adding quantization constants corresponding to distance %.3f ",
quality);
if (!cparams_.responsive) {
JXL_DEBUG_V(1,
"Warning: lossy compression without Squeeze "
"transform is just color quantization.");
quality *= 0.1f;
}
if (cparams_.color_transform != ColorTransform::kXYB) {
quality *= maxval / 255.f;
}
if (cparams_.options.nb_repeats == 0) {
return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!");
}
for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) {
Channel& ch = gi.channel[i];
int shift = ch.hshift + ch.vshift; // number of pixel halvings
if (shift > 16) shift = 16;
if (shift > 0) shift--;
int q;
// assuming default Squeeze here
int component =
(do_color ? 0 : 3) + ((i - gi.nb_meta_channels) % nb_chans);
// last 4 channels are final chroma residuals
if (nb_chans > 2 && i >= gi.channel.size() - 4 && cparams_.responsive) {
component = 1;
}
if (cparams_.color_transform == ColorTransform::kXYB && component < 3) {
q = quality * squeeze_quality_factor_xyb *
squeeze_xyb_qtable[component][shift];
} else {
if (cparams_.colorspace != 0 && component > 0 && component < 3) {
q = quality * squeeze_quality_factor * squeeze_chroma_qtable[shift];
} else {
q = quality * squeeze_quality_factor * squeeze_luma_factor *
squeeze_luma_qtable[shift];
}
}
if (q < 1) q = 1;
QuantizeChannel(gi.channel[i], q);
quants[i] = q;
}
}
// Fill other groups.
struct GroupParams {
Rect rect;
int minShift;
int maxShift;
ModularStreamId id;
};
std::vector<GroupParams> stream_params;
stream_options_[0] = cparams_.options;
// DC
for (size_t group_id = 0; group_id < frame_dim_.num_dc_groups; group_id++) {
const size_t gx = group_id % frame_dim_.xsize_dc_groups;
const size_t gy = group_id / frame_dim_.xsize_dc_groups;
const Rect rect(gx * frame_dim_.dc_group_dim, gy * frame_dim_.dc_group_dim,
frame_dim_.dc_group_dim, frame_dim_.dc_group_dim);
// minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim
// maxShift==1000 is infinity
stream_params.push_back(
GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(group_id)});
}
// AC global -> nothing.
// AC
for (size_t group_id = 0; group_id < frame_dim_.num_groups; group_id++) {
const size_t gx = group_id % frame_dim_.xsize_groups;
const size_t gy = group_id / frame_dim_.xsize_groups;
const Rect mrect(gx * frame_dim_.group_dim, gy * frame_dim_.group_dim,
frame_dim_.group_dim, frame_dim_.group_dim);
for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses();
i++) {
int maxShift, minShift;
frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift);
stream_params.push_back(GroupParams{
mrect, minShift, maxShift, ModularStreamId::ModularAC(group_id, i)});
}
}
// if there's only one group, everything ends up in GlobalModular
// in that case, also try RCTs/WP params for the one group
if (stream_params.size() == 2) {
stream_params.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
ModularStreamId::Global()});
}
gi_channel_.resize(stream_images_.size());
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, stream_params.size(), ThreadPool::NoInit,
[&](const uint32_t i, size_t /* thread */) {
stream_options_[stream_params[i].id.ID(frame_dim_)] = cparams_.options;
JXL_CHECK(PrepareStreamParams(
stream_params[i].rect, cparams_, stream_params[i].minShift,
stream_params[i].maxShift, stream_params[i].id, do_color));
},
"ChooseParams"));
{
// Clear out channels that have been copied to groups.
Image& full_image = stream_images_[0];
size_t c = full_image.nb_meta_channels;
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
}
for (; c < full_image.channel.size(); c++) {
full_image.channel[c].plane = ImageI();
}
}
if (!quants.empty()) {
for (uint32_t stream_id = 0; stream_id < stream_images_.size();
stream_id++) {
// skip non-modular stream_ids
if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
const Image& image = stream_images_[stream_id];
const ModularOptions& options = stream_options_[stream_id];
for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) {
if (i >= image.nb_meta_channels &&
(image.channel[i].w > options.max_chan_size ||
image.channel[i].h > options.max_chan_size)) {
continue;
}
if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
size_t ch_id = stream_id == 0
? i
: gi_channel_[stream_id][i - image.nb_meta_channels];
uint32_t q = quants[ch_id];
// Inform the tree splitting heuristics that each channel in each group
// used this quantization factor. This will produce a tree with the
// given multipliers.
if (multiplier_info_.empty() ||
multiplier_info_.back().range[1][0] != stream_id ||
multiplier_info_.back().multiplier != q) {
StaticPropRange range;
range[0] = {{i, i + 1}};
range[1] = {{stream_id, stream_id + 1}};
multiplier_info_.push_back({range, (uint32_t)q});
} else {
// Previous channel in the same group had the same quantization
// factor. Don't provide two different ranges, as that creates
// unnecessary nodes.
multiplier_info_.back().range[0][1] = i + 1;
}
}
}
// Merge group+channel settings that have the same channels and quantization
// factors, to avoid unnecessary nodes.
std::sort(multiplier_info_.begin(), multiplier_info_.end(),
[](ModularMultiplierInfo a, ModularMultiplierInfo b) {
return std::make_tuple(a.range, a.multiplier) <
std::make_tuple(b.range, b.multiplier);
});
size_t new_num = 1;
for (size_t i = 1; i < multiplier_info_.size(); i++) {
ModularMultiplierInfo& prev = multiplier_info_[new_num - 1];
ModularMultiplierInfo& cur = multiplier_info_[i];
if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier &&
prev.range[1][1] == cur.range[1][0]) {
prev.range[1][1] = cur.range[1][1];
} else {
multiplier_info_[new_num++] = multiplier_info_[i];
}
}
multiplier_info_.resize(new_num);
}
JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0]));
return PrepareEncoding(frame_header, pool, enc_state->heuristics.get(),
aux_out);
}
Status ModularFrameEncoder::PrepareEncoding(const FrameHeader& frame_header,
ThreadPool* pool,
EncoderHeuristics* heuristics,
AuxOut* aux_out) {
if (!tree_.empty()) return true;
// Compute tree.
size_t num_streams = stream_images_.size();
stream_headers_.resize(num_streams);
tokens_.resize(num_streams);
if (heuristics->CustomFixedTreeLossless(frame_dim_, &tree_)) {
// Using a fixed tree.
} else if (cparams_.speed_tier < SpeedTier::kFalcon ||
!cparams_.modular_mode) {
// Avoid creating a tree with leaves that don't correspond to any pixels.
std::vector<size_t> useful_splits;
useful_splits.reserve(tree_splits_.size());
for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) {
bool has_pixels = false;
size_t start = tree_splits_[chunk];
size_t stop = tree_splits_[chunk + 1];
for (size_t i = start; i < stop; i++) {
if (!stream_images_[i].empty()) has_pixels = true;
}
if (has_pixels) {
useful_splits.push_back(tree_splits_[chunk]);
}
}
// Don't do anything if modular mode does not have any pixels in this image
if (useful_splits.empty()) return true;
useful_splits.push_back(tree_splits_.back());
std::atomic_flag invalid_force_wp = ATOMIC_FLAG_INIT;
std::vector<Tree> trees(useful_splits.size() - 1);
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, useful_splits.size() - 1, ThreadPool::NoInit,
[&](const uint32_t chunk, size_t /* thread */) {
// TODO(veluca): parallelize more.
size_t total_pixels = 0;
uint32_t start = useful_splits[chunk];
uint32_t stop = useful_splits[chunk + 1];
while (start < stop && stream_images_[start].empty()) ++start;
while (start < stop && stream_images_[stop - 1].empty()) --stop;
uint32_t max_c = 0;
if (stream_options_[start].tree_kind !=
ModularOptions::TreeKind::kLearn) {
for (size_t i = start; i < stop; i++) {
for (const Channel& ch : stream_images_[i].channel) {
total_pixels += ch.w * ch.h;
}
}
trees[chunk] =
PredefinedTree(stream_options_[start].tree_kind, total_pixels);
return;
}
TreeSamples tree_samples;
if (!tree_samples.SetPredictor(stream_options_[start].predictor,
stream_options_[start].wp_tree_mode)) {
invalid_force_wp.test_and_set(std::memory_order_acq_rel);
return;
}
if (!tree_samples.SetProperties(
stream_options_[start].splitting_heuristics_properties,
stream_options_[start].wp_tree_mode)) {
invalid_force_wp.test_and_set(std::memory_order_acq_rel);
return;
}
std::vector<pixel_type> pixel_samples;
std::vector<pixel_type> diff_samples;
std::vector<uint32_t> group_pixel_count;
std::vector<uint32_t> channel_pixel_count;
for (size_t i = start; i < stop; i++) {
max_c = std::max<uint32_t>(stream_images_[i].channel.size(), max_c);
CollectPixelSamples(stream_images_[i], stream_options_[i], i,
group_pixel_count, channel_pixel_count,
pixel_samples, diff_samples);
}
StaticPropRange range;
range[0] = {{0, max_c}};
range[1] = {{start, stop}};
auto local_multiplier_info = multiplier_info_;
tree_samples.PreQuantizeProperties(
range, local_multiplier_info, group_pixel_count,
channel_pixel_count, pixel_samples, diff_samples,
stream_options_[start].max_property_values);
for (size_t i = start; i < stop; i++) {
JXL_CHECK(ModularGenericCompress(
stream_images_[i], stream_options_[i], /*writer=*/nullptr,
/*aux_out=*/nullptr, 0, i, &tree_samples, &total_pixels));
}
// TODO(veluca): parallelize more.
trees[chunk] =
LearnTree(std::move(tree_samples), total_pixels,
stream_options_[start], local_multiplier_info, range);
},
"LearnTrees"));
if (invalid_force_wp.test_and_set(std::memory_order_acq_rel)) {
return JXL_FAILURE("PrepareEncoding: force_no_wp with {Weighted}");
}
tree_.clear();
MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_);
} else {
// Fixed tree.
size_t total_pixels = 0;
for (const Image& img : stream_images_) {
for (const Channel& ch : img.channel) {
total_pixels += ch.w * ch.h;
}
}
if (cparams_.speed_tier <= SpeedTier::kFalcon) {
tree_ =
PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels);
} else if (cparams_.speed_tier <= SpeedTier::kThunder) {
tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC,
total_pixels);
} else {
tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)};
}
}
tree_tokens_.resize(1);
tree_tokens_[0].clear();
Tree decoded_tree;
TokenizeTree(tree_, &tree_tokens_[0], &decoded_tree);
JXL_ASSERT(tree_.size() == decoded_tree.size());
tree_ = std::move(decoded_tree);
if (WantDebugOutput(aux_out)) {
if (frame_header.dc_level > 0) {
PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" +
std::to_string(frame_header.dc_level) + "_tree");
} else {
PrintTree(tree_, aux_out->debug_prefix + "/global_tree");
}
}
image_widths_.resize(num_streams);
JXL_RETURN_IF_ERROR(RunOnPool(
pool, 0, num_streams, ThreadPool::NoInit,
[&](const uint32_t stream_id, size_t /* thread */) {
AuxOut my_aux_out;
if (aux_out) {
my_aux_out.dump_image = aux_out->dump_image;
my_aux_out.debug_prefix = aux_out->debug_prefix;
}
tokens_[stream_id].clear();
JXL_CHECK(ModularGenericCompress(
stream_images_[stream_id], stream_options_[stream_id],
/*writer=*/nullptr, &my_aux_out, 0, stream_id,
/*tree_samples=*/nullptr,
/*total_pixels=*/nullptr,
/*tree=*/&tree_, /*header=*/&stream_headers_[stream_id],
/*tokens=*/&tokens_[stream_id],
/*widths=*/&image_widths_[stream_id]));
},
"ComputeTokens"));
return true;
}
Status ModularFrameEncoder::EncodeGlobalInfo(BitWriter* writer,
AuxOut* aux_out) {
BitWriter::Allotment allotment(writer, 1);
// If we are using brotli, or not using modular mode.
if (tree_tokens_.empty() || tree_tokens_[0].empty()) {
writer->Write(1, 0);
ReclaimAndCharge(writer, &allotment, kLayerModularTree, aux_out);
return true;
}
writer->Write(1, 1);
ReclaimAndCharge(writer, &allotment, kLayerModularTree, aux_out);
// Write tree
HistogramParams params;
if (cparams_.speed_tier > SpeedTier::kKitten) {
params.clustering = HistogramParams::ClusteringType::kFast;
params.ans_histogram_strategy =
cparams_.speed_tier > SpeedTier::kThunder
? HistogramParams::ANSHistogramStrategy::kFast
: HistogramParams::ANSHistogramStrategy::kApproximate;
params.lz77_method =
cparams_.decoding_speed_tier >= 3 && cparams_.modular_mode
? (cparams_.speed_tier >= SpeedTier::kFalcon
? HistogramParams::LZ77Method::kRLE
: HistogramParams::LZ77Method::kLZ77)
: HistogramParams::LZ77Method::kNone;
// Near-lossless DC, as well as modular mode, require choosing hybrid uint
// more carefully.
if ((!extra_dc_precision.empty() && extra_dc_precision[0] != 0) ||
(cparams_.modular_mode && cparams_.speed_tier < SpeedTier::kCheetah)) {
params.uint_method = HistogramParams::HybridUintMethod::kFast;
} else {
params.uint_method = HistogramParams::HybridUintMethod::kNone;
}
} else if (cparams_.speed_tier <= SpeedTier::kTortoise) {
params.lz77_method = HistogramParams::LZ77Method::kOptimal;
} else {
params.lz77_method = HistogramParams::LZ77Method::kLZ77;
}
if (cparams_.decoding_speed_tier >= 1) {
params.max_histograms = 12;
}
if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive) {
params.lz77_method = cparams_.speed_tier >= SpeedTier::kCheetah
? HistogramParams::LZ77Method::kRLE
: cparams_.speed_tier >= SpeedTier::kKitten
? HistogramParams::LZ77Method::kLZ77
: HistogramParams::LZ77Method::kOptimal;
}
if (cparams_.decoding_speed_tier >= 2 && cparams_.responsive) {
params.uint_method = HistogramParams::HybridUintMethod::k000;
params.force_huffman = true;
}
BuildAndEncodeHistograms(params, kNumTreeContexts, tree_tokens_, &code_,
&context_map_, writer, kLayerModularTree, aux_out);
WriteTokens(tree_tokens_[0], code_, context_map_, writer, kLayerModularTree,
aux_out);
params.image_widths = image_widths_;
// Write histograms.
BuildAndEncodeHistograms(params, (tree_.size() + 1) / 2, tokens_, &code_,
&context_map_, writer, kLayerModularGlobal, aux_out);
return true;
}
Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out,
size_t layer,
const ModularStreamId& stream) {
size_t stream_id = stream.ID(frame_dim_);
if (stream_images_[stream_id].channel.empty()) {
return true; // Image with no channels, header never gets decoded.
}
JXL_RETURN_IF_ERROR(
Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out));
WriteTokens(tokens_[stream_id], code_, context_map_, writer, layer, aux_out);
return true;
}
namespace {
float EstimateWPCost(const Image& img, size_t i) {
size_t extra_bits = 0;
float histo_cost = 0;
HybridUintConfig config;
int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
-23, -15, -11, -7, -4, -3, -1, 0, 1,
3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, 191, 255, 392, 500};
constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
Histogram histo[nc] = {};
weighted::Header wp_header;
PredictorMode(i, &wp_header);
for (const Channel& ch : img.channel) {
const intptr_t onerow = ch.plane.PixelsPerRow();
weighted::State wp_state(wp_header, ch.w, ch.h);
Properties properties(1);
for (size_t y = 0; y < ch.h; y++) {
const pixel_type* JXL_RESTRICT r = ch.Row(y);
for (size_t x = 0; x < ch.w; x++) {
size_t offset = 0;
pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type_w top = (y ? *(r + x - onerow) : left);
pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
pixel_type_w topright =
(x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
x, y, ch.w, top, left, topright, topleft, toptop, &properties,
offset);
size_t ctx = 0;
for (int c : cutoffs) {
ctx += c >= properties[0];
}
pixel_type res = r[x] - guess;
uint32_t token, nbits, bits;
config.Encode(PackSigned(res), &token, &nbits, &bits);
histo[ctx].Add(token);
extra_bits += nbits;
wp_state.UpdateErrors(r[x], x, y, ch.w);
}
}
for (size_t h = 0; h < nc; h++) {
histo_cost += histo[h].ShannonEntropy();
histo[h].Clear();
}
}
return histo_cost + extra_bits;
}
float EstimateCost(const Image& img) {
// TODO(veluca): consider SIMDfication of this code.
size_t extra_bits = 0;
float histo_cost = 0;
HybridUintConfig config;
uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31,
47, 63, 95, 127, 191, 255, 392, 500};
constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
Histogram histo[nc] = {};
for (const Channel& ch : img.channel) {
const intptr_t onerow = ch.plane.PixelsPerRow();
for (size_t y = 0; y < ch.h; y++) {
const pixel_type* JXL_RESTRICT r = ch.Row(y);
for (size_t x = 0; x < ch.w; x++) {
pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
pixel_type_w top = (y ? *(r + x - onerow) : left);
pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
size_t maxdiff = std::max(std::max(left, top), topleft) -
std::min(std::min(left, top), topleft);
size_t ctx = 0;
for (uint32_t c : cutoffs) {
ctx += c > maxdiff;
}
pixel_type res = r[x] - ClampedGradient(top, left, topleft);
uint32_t token, nbits, bits;
config.Encode(PackSigned(res), &token, &nbits, &bits);
histo[ctx].Add(token);
extra_bits += nbits;
}
}
for (size_t h = 0; h < nc; h++) {
histo_cost += histo[h].ShannonEntropy();
histo[h].Clear();
}
}
return histo_cost + extra_bits;
}
} // namespace
Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
const CompressParams& cparams_,
int minShift, int maxShift,
const ModularStreamId& stream,
bool do_color) {
size_t stream_id = stream.ID(frame_dim_);
Image& full_image = stream_images_[0];
const size_t xsize = rect.xsize();
const size_t ysize = rect.ysize();
Image& gi = stream_images_[stream_id];
if (stream_id > 0) {
gi = Image(xsize, ysize, full_image.bitdepth, 0);
// start at the first bigger-than-frame_dim.group_dim non-metachannel
size_t c = full_image.nb_meta_channels;
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
}
for (; c < full_image.channel.size(); c++) {
Channel& fc = full_image.channel[c];
int shift = std::min(fc.hshift, fc.vshift);
if (shift > maxShift) continue;
if (shift < minShift) continue;
Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
if (r.xsize() == 0 || r.ysize() == 0) continue;
gi_channel_[stream_id].push_back(c);
Channel gc(r.xsize(), r.ysize());
gc.hshift = fc.hshift;
gc.vshift = fc.vshift;
for (size_t y = 0; y < r.ysize(); ++y) {
memcpy(gc.Row(y), r.ConstRow(fc.plane, y),
r.xsize() * sizeof(pixel_type));
}
gi.channel.emplace_back(std::move(gc));
}
if (gi.channel.empty()) return true;
// Do some per-group transforms
// Local palette
// TODO(veluca): make this work with quantize-after-prediction in lossy
// mode.
if (cparams_.butteraugli_distance == 0.f && cparams_.palette_colors != 0 &&
cparams_.speed_tier < SpeedTier::kCheetah) {
// all-channel palette (e.g. RGBA)
if (gi.channel.size() - gi.nb_meta_channels > 1) {
Transform maybe_palette(TransformId::kPalette);
maybe_palette.begin_c = gi.nb_meta_channels;
maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
maybe_palette.nb_colors = std::abs(cparams_.palette_colors);
maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
do_transform(gi, maybe_palette, weighted::Header());
}
// all-minus-one-channel palette (RGB with separate alpha, or CMY with
// separate K)
if (gi.channel.size() - gi.nb_meta_channels > 3) {
Transform maybe_palette_3(TransformId::kPalette);
maybe_palette_3.begin_c = gi.nb_meta_channels;
maybe_palette_3.num_c = gi.channel.size() - gi.nb_meta_channels - 1;
maybe_palette_3.nb_colors = std::abs(cparams_.palette_colors);
maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
maybe_palette_3.lossy_palette = cparams_.lossy_palette;
if (maybe_palette_3.lossy_palette) {
maybe_palette_3.predictor = Predictor::Weighted;
}
do_transform(gi, maybe_palette_3, weighted::Header());
}
}
// Local channel palette
if (cparams_.channel_colors_percent > 0 &&
cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette &&
cparams_.speed_tier < SpeedTier::kCheetah &&
!(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) {
// single channel palette (like FLIF's ChannelCompact)
size_t nb_channels = gi.channel.size() - gi.nb_meta_channels;
for (size_t i = 0; i < nb_channels; i++) {
int32_t min, max;
compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
int colors = max - min + 1;
JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
Transform maybe_palette_1(TransformId::kPalette);
maybe_palette_1.begin_c = i + gi.nb_meta_channels;
maybe_palette_1.num_c = 1;
// simple heuristic: if less than X percent of the values in the range
// actually occur, it is probably worth it to do a compaction
// (but only if the channel palette is less than 80% the size of the
// image itself)
maybe_palette_1.nb_colors =
std::min((int)(xsize * ysize * 0.8),
(int)(cparams_.channel_colors_percent / 100. * colors));
do_transform(gi, maybe_palette_1, weighted::Header());
}
}
}
// lossless and no specific color transform specified: try Nothing, YCoCg,
// and 17 RCTs
if (cparams_.color_transform == ColorTransform::kNone &&
cparams_.IsLossless() && cparams_.colorspace < 0 &&
gi.channel.size() - gi.nb_meta_channels >= 3 &&
cparams_.responsive == false && do_color &&
cparams_.speed_tier <= SpeedTier::kHare) {
Transform sg(TransformId::kRCT);
sg.begin_c = gi.nb_meta_channels;
size_t nb_rcts_to_try = 0;
switch (cparams_.speed_tier) {
case SpeedTier::kLightning:
case SpeedTier::kThunder:
case SpeedTier::kFalcon:
case SpeedTier::kCheetah:
nb_rcts_to_try = 0; // Just do global YCoCg
break;
case SpeedTier::kHare:
nb_rcts_to_try = 4;
break;
case SpeedTier::kWombat:
nb_rcts_to_try = 5;
break;
case SpeedTier::kSquirrel:
nb_rcts_to_try = 7;
break;
case SpeedTier::kKitten:
nb_rcts_to_try = 9;
break;
case SpeedTier::kTortoise:
nb_rcts_to_try = 19;
break;
}
float best_cost = std::numeric_limits<float>::max();
size_t best_rct = 0;
// These should be 19 actually different transforms; the remaining ones
// are equivalent to one of these (note that the first two are do-nothing
// and YCoCg) modulo channel reordering (which only matters in the case of
// MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR)
for (int i : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5,
5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4,
1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4,
4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) {
if (nb_rcts_to_try == 0) break;
sg.rct_type = i;
nb_rcts_to_try--;
if (do_transform(gi, sg, weighted::Header())) {
float cost = EstimateCost(gi);
if (cost < best_cost) {
best_rct = i;
best_cost = cost;
}
Transform t = gi.transform.back();
JXL_RETURN_IF_ERROR(t.Inverse(gi, weighted::Header(), nullptr));
gi.transform.pop_back();
}
}
// Apply the best RCT to the image for future encoding.
sg.rct_type = best_rct;
do_transform(gi, sg, weighted::Header());
} else {
// No need to try anything, just use the default options.
}
size_t nb_wp_modes = 1;
if (cparams_.speed_tier <= SpeedTier::kTortoise) {
nb_wp_modes = 5;
} else if (cparams_.speed_tier <= SpeedTier::kKitten) {
nb_wp_modes = 2;
}
if (nb_wp_modes > 1 &&
(stream_options_[stream_id].predictor == Predictor::Weighted ||
stream_options_[stream_id].predictor == Predictor::Best ||
stream_options_[stream_id].predictor == Predictor::Variable)) {
float best_cost = std::numeric_limits<float>::max();
stream_options_[stream_id].wp_mode = 0;
for (size_t i = 0; i < nb_wp_modes; i++) {
float cost = EstimateWPCost(gi, i);
if (cost < best_cost) {
best_cost = cost;
stream_options_[stream_id].wp_mode = i;
}
}
}
return true;
}
constexpr float q_deadzone = 0.62f;
int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y,
size_t w, weighted::State* wp_state, float value,
float inv_factor) {
float svalue = value * inv_factor;
PredictionResult pred =
PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state);
svalue -= pred.guess;
if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
int residual = roundf(svalue);
if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2;
return residual + pred.guess;
}
int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x,
size_t y, size_t w, float value, float inv_factor) {
float svalue = value * inv_factor;
PredictionResult pred =
PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient);
svalue -= pred.guess;
if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
int residual = roundf(svalue);
if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2;
return residual + pred.guess;
}
void ModularFrameEncoder::AddVarDCTDC(const Image3F& dc, size_t group_index,
bool nl_dc, PassesEncoderState* enc_state,
bool jpeg_transcode) {
const Rect r = enc_state->shared.DCGroupRect(group_index);
extra_dc_precision[group_index] = nl_dc ? 1 : 0;
float mul = 1 << extra_dc_precision[group_index];
size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_);
stream_options_[stream_id].max_chan_size = 0xFFFFFF;
stream_options_[stream_id].predictor = Predictor::Weighted;
stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
if (cparams_.speed_tier >= SpeedTier::kSquirrel) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
}
if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) {
stream_options_[stream_id].predictor =
(cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable
: Predictor::Best);
stream_options_[stream_id].wp_tree_mode =
ModularOptions::TreeMode::kDefault;
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
}
if (cparams_.decoding_speed_tier >= 1) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kGradientFixedDC;
}
stream_images_[stream_id] = Image(r.xsize(), r.ysize(), 8, 3);
if (nl_dc && stream_options_[stream_id].tree_kind ==
ModularOptions::TreeKind::kGradientFixedDC) {
JXL_ASSERT(enc_state->shared.frame_header.chroma_subsampling.Is444());
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = enc_state->shared.cmap.DCFactors()[c];
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
size_t stride = stream_images_[stream_id]
.channel[c < 2 ? c ^ 1 : c]
.plane.PixelsPerRow();
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y,
r.xsize(), row[x], inv_factor);
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeGradient(
quant_row, stride, c, x, y, r.xsize(),
row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
}
}
}
}
} else if (nl_dc) {
JXL_ASSERT(enc_state->shared.frame_header.chroma_subsampling.Is444());
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = enc_state->shared.cmap.DCFactors()[c];
weighted::Header header;
weighted::State wp_state(header, r.xsize(), r.ysize());
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
size_t stride = stream_images_[stream_id]
.channel[c < 2 ? c ^ 1 : c]
.plane.PixelsPerRow();
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeWP(quant_row, stride, c, x, y, r.xsize(),
&wp_state, row[x], inv_factor);
wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = QuantizeWP(
quant_row, stride, c, x, y, r.xsize(), &wp_state,
row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
}
}
}
}
} else if (enc_state->shared.frame_header.chroma_subsampling.Is444()) {
for (size_t c : {1, 0, 2}) {
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
float cfl_factor = enc_state->shared.cmap.DCFactors()[c];
for (size_t y = 0; y < r.ysize(); y++) {
int32_t* quant_row =
stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
const float* row = r.ConstPlaneRow(dc, c, y);
if (c == 1) {
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] = roundf(row[x] * inv_factor);
}
} else {
int32_t* quant_row_y =
stream_images_[stream_id].channel[0].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
quant_row[x] =
roundf((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) *
inv_factor);
}
}
}
}
} else {
for (size_t c : {1, 0, 2}) {
Rect rect(
r.x0() >> enc_state->shared.frame_header.chroma_subsampling.HShift(c),
r.y0() >> enc_state->shared.frame_header.chroma_subsampling.VShift(c),
r.xsize() >>
enc_state->shared.frame_header.chroma_subsampling.HShift(c),
r.ysize() >>
enc_state->shared.frame_header.chroma_subsampling.VShift(c));
float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
size_t ys = rect.ysize();
size_t xs = rect.xsize();
Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c];
ch.w = xs;
ch.h = ys;
ch.shrink();
for (size_t y = 0; y < ys; y++) {
int32_t* quant_row = ch.plane.Row(y);
const float* row = rect.ConstPlaneRow(dc, c, y);
for (size_t x = 0; x < xs; x++) {
quant_row[x] = roundf(row[x] * inv_factor);
}
}
}
}
DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc,
stream_images_[stream_id], enc_state->shared.quantizer.MulDC(),
1.0 / mul, enc_state->shared.cmap.DCFactors(),
enc_state->shared.frame_header.chroma_subsampling,
enc_state->shared.block_ctx_map);
}
void ModularFrameEncoder::AddACMetadata(size_t group_index, bool jpeg_transcode,
PassesEncoderState* enc_state) {
const Rect r = enc_state->shared.DCGroupRect(group_index);
size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_);
stream_options_[stream_id].max_chan_size = 0xFFFFFF;
stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
if (jpeg_transcode) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kJpegTranscodeACMeta;
} else if (cparams_.speed_tier >= SpeedTier::kFalcon) {
stream_options_[stream_id].tree_kind =
ModularOptions::TreeKind::kFalconACMeta;
} else if (cparams_.speed_tier > SpeedTier::kKitten) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta;
}
// If we are using a non-constant CfL field, and are in a slow enough mode,
// re-enable tree computation for it.
if (cparams_.speed_tier < SpeedTier::kSquirrel &&
cparams_.force_cfl_jpeg_recompression) {
stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
}
// YToX, YToB, ACS + QF, EPF
Image& image = stream_images_[stream_id];
image = Image(r.xsize(), r.ysize(), 8, 4);
static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
image.channel[0] = Channel(cr.xsize(), cr.ysize(), 3, 3);
image.channel[1] = Channel(cr.xsize(), cr.ysize(), 3, 3);
image.channel[2] = Channel(r.xsize() * r.ysize(), 2, 0, 0);
ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map,
Rect(image.channel[0].plane), &image.channel[0].plane);
ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map,
Rect(image.channel[1].plane), &image.channel[1].plane);
size_t num = 0;
for (size_t y = 0; y < r.ysize(); y++) {
AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y);
const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y);
const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y);
int32_t* out_acs = image.channel[2].plane.Row(0);
int32_t* out_qf = image.channel[2].plane.Row(1);
int32_t* row_out_epf = image.channel[3].plane.Row(y);
for (size_t x = 0; x < r.xsize(); x++) {
row_out_epf[x] = row_epf[x];
if (!row_acs[x].IsFirstBlock()) continue;
out_acs[num] = row_acs[x].RawStrategy();
out_qf[num] = row_qf[x] - 1;
num++;
}
}
image.channel[2].w = num;
ac_metadata_size[group_index] = num;
}
void ModularFrameEncoder::EncodeQuantTable(
size_t size_x, size_t size_y, BitWriter* writer,
const QuantEncoding& encoding, size_t idx,
ModularFrameEncoder* modular_frame_encoder) {
JXL_ASSERT(encoding.qraw.qtable != nullptr);
JXL_ASSERT(size_x * size_y * 3 == encoding.qraw.qtable->size());
JXL_CHECK(F16Coder::Write(encoding.qraw.qtable_den, writer));
if (modular_frame_encoder) {
JXL_CHECK(modular_frame_encoder->EncodeStream(
writer, nullptr, 0, ModularStreamId::QuantTable(idx)));
return;
}
Image image(size_x, size_y, 8, 3);
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
for (size_t x = 0; x < size_x; x++) {
row[x] = (*encoding.qraw.qtable)[c * size_x * size_y + y * size_x + x];
}
}
}
ModularOptions cfopts;
JXL_CHECK(ModularGenericCompress(image, cfopts, writer));
}
void ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
const QuantEncoding& encoding,
size_t idx) {
size_t stream_id = ModularStreamId::QuantTable(idx).ID(frame_dim_);
JXL_ASSERT(encoding.qraw.qtable != nullptr);
JXL_ASSERT(size_x * size_y * 3 == encoding.qraw.qtable->size());
Image& image = stream_images_[stream_id];
image = Image(size_x, size_y, 8, 3);
for (size_t c = 0; c < 3; c++) {
for (size_t y = 0; y < size_y; y++) {
int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
for (size_t x = 0; x < size_x; x++) {
row[x] = (*encoding.qraw.qtable)[c * size_x * size_y + y * size_x + x];
}
}
}
}
} // namespace jxl
|