summaryrefslogtreecommitdiff
path: root/third_party/highway/hwy/nanobenchmark.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/highway/hwy/nanobenchmark.cc')
-rw-r--r--third_party/highway/hwy/nanobenchmark.cc762
1 files changed, 0 insertions, 762 deletions
diff --git a/third_party/highway/hwy/nanobenchmark.cc b/third_party/highway/hwy/nanobenchmark.cc
deleted file mode 100644
index b5acf61..0000000
--- a/third_party/highway/hwy/nanobenchmark.cc
+++ /dev/null
@@ -1,762 +0,0 @@
-// Copyright 2019 Google LLC
-// SPDX-License-Identifier: Apache-2.0
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include "hwy/nanobenchmark.h"
-
-#ifndef __STDC_FORMAT_MACROS
-#define __STDC_FORMAT_MACROS // before inttypes.h
-#endif
-#include <inttypes.h>
-#include <stddef.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <time.h> // clock_gettime
-
-#include <algorithm> // sort
-#include <array>
-#include <atomic>
-#include <chrono> //NOLINT
-#include <limits>
-#include <numeric> // iota
-#include <random>
-#include <string>
-#include <vector>
-
-#if defined(_WIN32) || defined(_WIN64)
-#ifndef NOMINMAX
-#define NOMINMAX
-#endif // NOMINMAX
-#include <windows.h>
-#endif
-
-#if defined(__APPLE__)
-#include <mach/mach.h>
-#include <mach/mach_time.h>
-#endif
-
-#if defined(__HAIKU__)
-#include <OS.h>
-#endif
-
-#include "hwy/base.h"
-#if HWY_ARCH_PPC && defined(__GLIBC__)
-#include <sys/platform/ppc.h> // NOLINT __ppc_get_timebase_freq
-#elif HWY_ARCH_X86
-
-#if HWY_COMPILER_MSVC
-#include <intrin.h>
-#else
-#include <cpuid.h> // NOLINT
-#endif // HWY_COMPILER_MSVC
-
-#endif // HWY_ARCH_X86
-
-namespace hwy {
-namespace {
-namespace timer {
-
-// Ticks := platform-specific timer values (CPU cycles on x86). Must be
-// unsigned to guarantee wraparound on overflow.
-using Ticks = uint64_t;
-
-// Start/Stop return absolute timestamps and must be placed immediately before
-// and after the region to measure. We provide separate Start/Stop functions
-// because they use different fences.
-//
-// Background: RDTSC is not 'serializing'; earlier instructions may complete
-// after it, and/or later instructions may complete before it. 'Fences' ensure
-// regions' elapsed times are independent of such reordering. The only
-// documented unprivileged serializing instruction is CPUID, which acts as a
-// full fence (no reordering across it in either direction). Unfortunately
-// the latency of CPUID varies wildly (perhaps made worse by not initializing
-// its EAX input). Because it cannot reliably be deducted from the region's
-// elapsed time, it must not be included in the region to measure (i.e.
-// between the two RDTSC).
-//
-// The newer RDTSCP is sometimes described as serializing, but it actually
-// only serves as a half-fence with release semantics. Although all
-// instructions in the region will complete before the final timestamp is
-// captured, subsequent instructions may leak into the region and increase the
-// elapsed time. Inserting another fence after the final RDTSCP would prevent
-// such reordering without affecting the measured region.
-//
-// Fortunately, such a fence exists. The LFENCE instruction is only documented
-// to delay later loads until earlier loads are visible. However, Intel's
-// reference manual says it acts as a full fence (waiting until all earlier
-// instructions have completed, and delaying later instructions until it
-// completes). AMD assigns the same behavior to MFENCE.
-//
-// We need a fence before the initial RDTSC to prevent earlier instructions
-// from leaking into the region, and arguably another after RDTSC to avoid
-// region instructions from completing before the timestamp is recorded.
-// When surrounded by fences, the additional RDTSCP half-fence provides no
-// benefit, so the initial timestamp can be recorded via RDTSC, which has
-// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
-// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
-//
-// Using Start+Start leads to higher variance and overhead than Stop+Stop.
-// However, Stop+Stop includes an LFENCE in the region measurements, which
-// adds a delay dependent on earlier loads. The combination of Start+Stop
-// is faster than Start+Start and more consistent than Stop+Stop because
-// the first LFENCE already delayed subsequent loads before the measured
-// region. This combination seems not to have been considered in prior work:
-// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
-//
-// Note: performance counters can measure 'exact' instructions-retired or
-// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
-// requires fences. Unfortunately, it is not accessible on all OSes and we
-// prefer to avoid kernel-mode drivers. Performance counters are also affected
-// by several under/over-count errata, so we use the TSC instead.
-
-// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
-// divide by InvariantTicksPerSecond.
-inline Ticks Start() {
- Ticks t;
-#if HWY_ARCH_PPC && defined(__GLIBC__)
- asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
-#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
- // pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
- asm volatile("mrs %0, cntvct_el0" : "=r"(t));
-#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- t = __rdtsc();
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
-#elif HWY_ARCH_X86_64
- asm volatile(
- "lfence\n\t"
- "rdtsc\n\t"
- "shl $32, %%rdx\n\t"
- "or %%rdx, %0\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rdx = TSC >> 32.
- // "cc" = flags modified by SHL.
- : "rdx", "memory", "cc");
-#elif HWY_ARCH_RVV
- asm volatile("rdcycle %0" : "=r"(t));
-#elif defined(_WIN32) || defined(_WIN64)
- LARGE_INTEGER counter;
- (void)QueryPerformanceCounter(&counter);
- t = counter.QuadPart;
-#elif defined(__APPLE__)
- t = mach_absolute_time();
-#elif defined(__HAIKU__)
- t = system_time_nsecs(); // since boot
-#else // POSIX
- timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- t = static_cast<Ticks>(ts.tv_sec * 1000000000LL + ts.tv_nsec);
-#endif
- return t;
-}
-
-// WARNING: on x86, caller must check HasRDTSCP before using this!
-inline Ticks Stop() {
- uint64_t t;
-#if HWY_ARCH_PPC && defined(__GLIBC__)
- asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
-#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
- // pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
- asm volatile("mrs %0, cntvct_el0" : "=r"(t));
-#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
- _ReadWriteBarrier();
- unsigned aux;
- t = __rdtscp(&aux);
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
-#elif HWY_ARCH_X86_64
- // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
- asm volatile(
- "rdtscp\n\t"
- "shl $32, %%rdx\n\t"
- "or %%rdx, %0\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
- // "cc" = flags modified by SHL.
- : "rcx", "rdx", "memory", "cc");
-#else
- t = Start();
-#endif
- return t;
-}
-
-} // namespace timer
-
-namespace robust_statistics {
-
-// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
-// than std::sort for input distributions with very few unique values.
-template <class T>
-void CountingSort(T* values, size_t num_values) {
- // Unique values and their frequency (similar to flat_map).
- using Unique = std::pair<T, int>;
- std::vector<Unique> unique;
- for (size_t i = 0; i < num_values; ++i) {
- const T value = values[i];
- const auto pos =
- std::find_if(unique.begin(), unique.end(),
- [value](const Unique u) { return u.first == value; });
- if (pos == unique.end()) {
- unique.push_back(std::make_pair(value, 1));
- } else {
- ++pos->second;
- }
- }
-
- // Sort in ascending order of value (pair.first).
- std::sort(unique.begin(), unique.end());
-
- // Write that many copies of each unique value to the array.
- T* HWY_RESTRICT p = values;
- for (const auto& value_count : unique) {
- std::fill(p, p + value_count.second, value_count.first);
- p += value_count.second;
- }
- NANOBENCHMARK_CHECK(p == values + num_values);
-}
-
-// @return i in [idx_begin, idx_begin + half_count) that minimizes
-// sorted[i + half_count] - sorted[i].
-template <typename T>
-size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin,
- const size_t half_count) {
- T min_range = std::numeric_limits<T>::max();
- size_t min_idx = 0;
-
- for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
- NANOBENCHMARK_CHECK(sorted[idx] <= sorted[idx + half_count]);
- const T range = sorted[idx + half_count] - sorted[idx];
- if (range < min_range) {
- min_range = range;
- min_idx = idx;
- }
- }
-
- return min_idx;
-}
-
-// Returns an estimate of the mode by calling MinRange on successively
-// halved intervals. "sorted" must be in ascending order. This is the
-// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
-// estimator of the mode", with complexity O(N log N). The mode is less
-// affected by outliers in highly-skewed distributions than the median.
-// The averaging operation below assumes "T" is an unsigned integer type.
-template <typename T>
-T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) {
- size_t idx_begin = 0;
- size_t half_count = num_values / 2;
- while (half_count > 1) {
- idx_begin = MinRange(sorted, idx_begin, half_count);
- half_count >>= 1;
- }
-
- const T x = sorted[idx_begin + 0];
- if (half_count == 0) {
- return x;
- }
- NANOBENCHMARK_CHECK(half_count == 1);
- const T average = (x + sorted[idx_begin + 1] + 1) / 2;
- return average;
-}
-
-// Returns the mode. Side effect: sorts "values".
-template <typename T>
-T Mode(T* values, const size_t num_values) {
- CountingSort(values, num_values);
- return ModeOfSorted(values, num_values);
-}
-
-template <typename T, size_t N>
-T Mode(T (&values)[N]) {
- return Mode(&values[0], N);
-}
-
-// Returns the median value. Side effect: sorts "values".
-template <typename T>
-T Median(T* values, const size_t num_values) {
- NANOBENCHMARK_CHECK(!values->empty());
- std::sort(values, values + num_values);
- const size_t half = num_values / 2;
- // Odd count: return middle
- if (num_values % 2) {
- return values[half];
- }
- // Even count: return average of middle two.
- return (values[half] + values[half - 1] + 1) / 2;
-}
-
-// Returns a robust measure of variability.
-template <typename T>
-T MedianAbsoluteDeviation(const T* values, const size_t num_values,
- const T median) {
- NANOBENCHMARK_CHECK(num_values != 0);
- std::vector<T> abs_deviations;
- abs_deviations.reserve(num_values);
- for (size_t i = 0; i < num_values; ++i) {
- const int64_t abs = std::abs(static_cast<int64_t>(values[i]) -
- static_cast<int64_t>(median));
- abs_deviations.push_back(static_cast<T>(abs));
- }
- return Median(abs_deviations.data(), num_values);
-}
-
-} // namespace robust_statistics
-} // namespace
-namespace platform {
-namespace {
-
-// Prevents the compiler from eliding the computations that led to "output".
-template <class T>
-inline void PreventElision(T&& output) {
-#if HWY_COMPILER_MSVC == 0
- // Works by indicating to the compiler that "output" is being read and
- // modified. The +r constraint avoids unnecessary writes to memory, but only
- // works for built-in types (typically FuncOutput).
- asm volatile("" : "+r"(output) : : "memory");
-#else
- // MSVC does not support inline assembly anymore (and never supported GCC's
- // RTL constraints). Self-assignment with #pragma optimize("off") might be
- // expected to prevent elision, but it does not with MSVC 2015. Type-punning
- // with volatile pointers generates inefficient code on MSVC 2017.
- static std::atomic<T> dummy(T{});
- dummy.store(output, std::memory_order_relaxed);
-#endif
-}
-
-// Measures the actual current frequency of Ticks. We cannot rely on the nominal
-// frequency encoded in x86 BrandString because it is misleading on M1 Rosetta,
-// and not reported by AMD. CPUID 0x15 is also not yet widely supported. Also
-// used on RISC-V and ARM64.
-HWY_MAYBE_UNUSED double MeasureNominalClockRate() {
- double max_ticks_per_sec = 0.0;
- // Arbitrary, enough to ignore 2 outliers without excessive init time.
- for (int rep = 0; rep < 3; ++rep) {
- auto time0 = std::chrono::steady_clock::now();
- using Time = decltype(time0);
- const timer::Ticks ticks0 = timer::Start();
- const Time time_min = time0 + std::chrono::milliseconds(10);
-
- Time time1;
- timer::Ticks ticks1;
- for (;;) {
- time1 = std::chrono::steady_clock::now();
- // Ideally this would be Stop, but that requires RDTSCP on x86. To avoid
- // another codepath, just use Start instead. now() presumably has its own
- // fence-like behavior.
- ticks1 = timer::Start(); // Do not use Stop, see comment above
- if (time1 >= time_min) break;
- }
-
- const double dticks = static_cast<double>(ticks1 - ticks0);
- std::chrono::duration<double, std::ratio<1>> dtime = time1 - time0;
- const double ticks_per_sec = dticks / dtime.count();
- max_ticks_per_sec = std::max(max_ticks_per_sec, ticks_per_sec);
- }
- return max_ticks_per_sec;
-}
-
-#if HWY_ARCH_X86
-
-void Cpuid(const uint32_t level, const uint32_t count,
- uint32_t* HWY_RESTRICT abcd) {
-#if HWY_COMPILER_MSVC
- int regs[4];
- __cpuidex(regs, level, count);
- for (int i = 0; i < 4; ++i) {
- abcd[i] = regs[i];
- }
-#else
- uint32_t a;
- uint32_t b;
- uint32_t c;
- uint32_t d;
- __cpuid_count(level, count, a, b, c, d);
- abcd[0] = a;
- abcd[1] = b;
- abcd[2] = c;
- abcd[3] = d;
-#endif
-}
-
-bool HasRDTSCP() {
- uint32_t abcd[4];
- Cpuid(0x80000001U, 0, abcd); // Extended feature flags
- return (abcd[3] & (1u << 27)) != 0; // RDTSCP
-}
-
-std::string BrandString() {
- char brand_string[49];
- std::array<uint32_t, 4> abcd;
-
- // Check if brand string is supported (it is on all reasonable Intel/AMD)
- Cpuid(0x80000000U, 0, abcd.data());
- if (abcd[0] < 0x80000004U) {
- return std::string();
- }
-
- for (size_t i = 0; i < 3; ++i) {
- Cpuid(static_cast<uint32_t>(0x80000002U + i), 0, abcd.data());
- CopyBytes<sizeof(abcd)>(&abcd[0], brand_string + i * 16); // not same size
- }
- brand_string[48] = 0;
- return brand_string;
-}
-
-#endif // HWY_ARCH_X86
-
-} // namespace
-
-HWY_DLLEXPORT double InvariantTicksPerSecond() {
-#if HWY_ARCH_PPC && defined(__GLIBC__)
- return static_cast<double>(__ppc_get_timebase_freq());
-#elif HWY_ARCH_X86 || HWY_ARCH_RVV || (HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC)
- // We assume the x86 TSC is invariant; it is on all recent Intel/AMD CPUs.
- static const double freq = MeasureNominalClockRate();
- return freq;
-#elif defined(_WIN32) || defined(_WIN64)
- LARGE_INTEGER freq;
- (void)QueryPerformanceFrequency(&freq);
- return static_cast<double>(freq.QuadPart);
-#elif defined(__APPLE__)
- // https://developer.apple.com/library/mac/qa/qa1398/_index.html
- mach_timebase_info_data_t timebase;
- (void)mach_timebase_info(&timebase);
- return static_cast<double>(timebase.denom) / timebase.numer * 1E9;
-#else
- return 1E9; // Haiku and clock_gettime return nanoseconds.
-#endif
-}
-
-HWY_DLLEXPORT double Now() {
- static const double mul = 1.0 / InvariantTicksPerSecond();
- return static_cast<double>(timer::Start()) * mul;
-}
-
-HWY_DLLEXPORT uint64_t TimerResolution() {
-#if HWY_ARCH_X86
- bool can_use_stop = platform::HasRDTSCP();
-#else
- constexpr bool can_use_stop = true;
-#endif
-
- // Nested loop avoids exceeding stack/L1 capacity.
- timer::Ticks repetitions[Params::kTimerSamples];
- for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
- timer::Ticks samples[Params::kTimerSamples];
- if (can_use_stop) {
- for (size_t i = 0; i < Params::kTimerSamples; ++i) {
- const timer::Ticks t0 = timer::Start();
- const timer::Ticks t1 = timer::Stop(); // we checked HasRDTSCP above
- samples[i] = t1 - t0;
- }
- } else {
- for (size_t i = 0; i < Params::kTimerSamples; ++i) {
- const timer::Ticks t0 = timer::Start();
- const timer::Ticks t1 = timer::Start(); // do not use Stop, see above
- samples[i] = t1 - t0;
- }
- }
- repetitions[rep] = robust_statistics::Mode(samples);
- }
- return robust_statistics::Mode(repetitions);
-}
-
-} // namespace platform
-namespace {
-
-static const timer::Ticks timer_resolution = platform::TimerResolution();
-
-// Estimates the expected value of "lambda" values with a variable number of
-// samples until the variability "rel_mad" is less than "max_rel_mad".
-template <class Lambda>
-timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
- const Params& p, const Lambda& lambda) {
- // Choose initial samples_per_eval based on a single estimated duration.
- timer::Ticks t0 = timer::Start();
- lambda();
- timer::Ticks t1 = timer::Stop(); // Caller checks HasRDTSCP
- timer::Ticks est = t1 - t0;
- static const double ticks_per_second = platform::InvariantTicksPerSecond();
- const size_t ticks_per_eval =
- static_cast<size_t>(ticks_per_second * p.seconds_per_eval);
- size_t samples_per_eval = est == 0
- ? p.min_samples_per_eval
- : static_cast<size_t>(ticks_per_eval / est);
- samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval);
-
- std::vector<timer::Ticks> samples;
- samples.reserve(1 + samples_per_eval);
- samples.push_back(est);
-
- // Percentage is too strict for tiny differences, so also allow a small
- // absolute "median absolute deviation".
- const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100;
- *rel_mad = 0.0; // ensure initialized
-
- for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
- samples.reserve(samples.size() + samples_per_eval);
- for (size_t i = 0; i < samples_per_eval; ++i) {
- t0 = timer::Start();
- lambda();
- t1 = timer::Stop(); // Caller checks HasRDTSCP
- samples.push_back(t1 - t0);
- }
-
- if (samples.size() >= p.min_mode_samples) {
- est = robust_statistics::Mode(samples.data(), samples.size());
- } else {
- // For "few" (depends also on the variance) samples, Median is safer.
- est = robust_statistics::Median(samples.data(), samples.size());
- }
- NANOBENCHMARK_CHECK(est != 0);
-
- // Median absolute deviation (mad) is a robust measure of 'variability'.
- const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
- samples.data(), samples.size(), est);
- *rel_mad = static_cast<double>(abs_mad) / static_cast<double>(est);
-
- if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
- if (p.verbose) {
- printf("%6" PRIu64 " samples => %5" PRIu64 " (abs_mad=%4" PRIu64
- ", rel_mad=%4.2f%%)\n",
- static_cast<uint64_t>(samples.size()),
- static_cast<uint64_t>(est), static_cast<uint64_t>(abs_mad),
- *rel_mad * 100.0);
- }
- return est;
- }
- }
-
- if (p.verbose) {
- printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6" PRIu64
- " samples.\n",
- *rel_mad * 100.0, max_rel_mad * 100.0,
- static_cast<uint64_t>(samples.size()));
- }
- return est;
-}
-
-using InputVec = std::vector<FuncInput>;
-
-// Returns vector of unique input values.
-InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
- InputVec unique(inputs, inputs + num_inputs);
- std::sort(unique.begin(), unique.end());
- unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
- return unique;
-}
-
-// Returns how often we need to call func for sufficient precision.
-size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique,
- const Params& p) {
- // Min elapsed ticks for any input.
- timer::Ticks min_duration = ~timer::Ticks(0);
-
- for (const FuncInput input : unique) {
- double rel_mad;
- const timer::Ticks total = SampleUntilStable(
- p.target_rel_mad, &rel_mad, p,
- [func, arg, input]() { platform::PreventElision(func(arg, input)); });
- min_duration = HWY_MIN(min_duration, total - timer_resolution);
- }
-
- // Number of repetitions required to reach the target resolution.
- const size_t max_skip = p.precision_divisor;
- // Number of repetitions given the estimated duration.
- const size_t num_skip =
- min_duration == 0
- ? 0
- : static_cast<size_t>((max_skip + min_duration - 1) / min_duration);
- if (p.verbose) {
- printf("res=%" PRIu64 " max_skip=%" PRIu64 " min_dur=%" PRIu64
- " num_skip=%" PRIu64 "\n",
- static_cast<uint64_t>(timer_resolution),
- static_cast<uint64_t>(max_skip), static_cast<uint64_t>(min_duration),
- static_cast<uint64_t>(num_skip));
- }
- return num_skip;
-}
-
-// Replicates inputs until we can omit "num_skip" occurrences of an input.
-InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
- const size_t num_unique, const size_t num_skip,
- const Params& p) {
- InputVec full;
- if (num_unique == 1) {
- full.assign(p.subset_ratio * num_skip, inputs[0]);
- return full;
- }
-
- full.reserve(p.subset_ratio * num_skip * num_inputs);
- for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
- full.insert(full.end(), inputs, inputs + num_inputs);
- }
- std::mt19937 rng;
- std::shuffle(full.begin(), full.end(), rng);
- return full;
-}
-
-// Copies the "full" to "subset" in the same order, but with "num_skip"
-// randomly selected occurrences of "input_to_skip" removed.
-void FillSubset(const InputVec& full, const FuncInput input_to_skip,
- const size_t num_skip, InputVec* subset) {
- const size_t count =
- static_cast<size_t>(std::count(full.begin(), full.end(), input_to_skip));
- // Generate num_skip random indices: which occurrence to skip.
- std::vector<uint32_t> omit(count);
- std::iota(omit.begin(), omit.end(), 0);
- // omit[] is the same on every call, but that's OK because they identify the
- // Nth instance of input_to_skip, so the position within full[] differs.
- std::mt19937 rng;
- std::shuffle(omit.begin(), omit.end(), rng);
- omit.resize(num_skip);
- std::sort(omit.begin(), omit.end());
-
- uint32_t occurrence = ~0u; // 0 after preincrement
- size_t idx_omit = 0; // cursor within omit[]
- size_t idx_subset = 0; // cursor within *subset
- for (const FuncInput next : full) {
- if (next == input_to_skip) {
- ++occurrence;
- // Haven't removed enough already
- if (idx_omit < num_skip) {
- // This one is up for removal
- if (occurrence == omit[idx_omit]) {
- ++idx_omit;
- continue;
- }
- }
- }
- if (idx_subset < subset->size()) {
- (*subset)[idx_subset++] = next;
- }
- }
- NANOBENCHMARK_CHECK(idx_subset == subset->size());
- NANOBENCHMARK_CHECK(idx_omit == omit.size());
- NANOBENCHMARK_CHECK(occurrence == count - 1);
-}
-
-// Returns total ticks elapsed for all inputs.
-timer::Ticks TotalDuration(const Func func, const uint8_t* arg,
- const InputVec* inputs, const Params& p,
- double* max_rel_mad) {
- double rel_mad;
- const timer::Ticks duration =
- SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
- for (const FuncInput input : *inputs) {
- platform::PreventElision(func(arg, input));
- }
- });
- *max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad);
- return duration;
-}
-
-// (Nearly) empty Func for measuring timer overhead/resolution.
-HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) {
- return input;
-}
-
-// Returns overhead of accessing inputs[] and calling a function; this will
-// be deducted from future TotalDuration return values.
-timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs,
- const Params& p) {
- double rel_mad;
- // Zero tolerance because repeatability is crucial and EmptyFunc is fast.
- return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
- for (const FuncInput input : *inputs) {
- platform::PreventElision(EmptyFunc(arg, input));
- }
- });
-}
-
-} // namespace
-
-HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; }
-
-HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg,
- const FuncInput* inputs, const size_t num_inputs,
- Result* results, const Params& p) {
- NANOBENCHMARK_CHECK(num_inputs != 0);
-
-#if HWY_ARCH_X86
- if (!platform::HasRDTSCP()) {
- fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n",
- platform::BrandString().c_str());
- return 0;
- }
-#endif
-
- const InputVec& unique = UniqueInputs(inputs, num_inputs);
-
- const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
- if (num_skip == 0) return 0; // NumSkip already printed error message
- // (slightly less work on x86 to cast from signed integer)
- const float mul = 1.0f / static_cast<float>(static_cast<int>(num_skip));
-
- const InputVec& full =
- ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
- InputVec subset(full.size() - num_skip);
-
- const timer::Ticks overhead = Overhead(arg, &full, p);
- const timer::Ticks overhead_skip = Overhead(arg, &subset, p);
- if (overhead < overhead_skip) {
- fprintf(stderr, "Measurement failed: overhead %" PRIu64 " < %" PRIu64 "\n",
- static_cast<uint64_t>(overhead),
- static_cast<uint64_t>(overhead_skip));
- return 0;
- }
-
- if (p.verbose) {
- printf("#inputs=%5" PRIu64 ",%5" PRIu64 " overhead=%5" PRIu64 ",%5" PRIu64
- "\n",
- static_cast<uint64_t>(full.size()),
- static_cast<uint64_t>(subset.size()),
- static_cast<uint64_t>(overhead),
- static_cast<uint64_t>(overhead_skip));
- }
-
- double max_rel_mad = 0.0;
- const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
-
- for (size_t i = 0; i < unique.size(); ++i) {
- FillSubset(full, unique[i], num_skip, &subset);
- const timer::Ticks total_skip =
- TotalDuration(func, arg, &subset, p, &max_rel_mad);
-
- if (total < total_skip) {
- fprintf(stderr, "Measurement failed: total %" PRIu64 " < %" PRIu64 "\n",
- static_cast<uint64_t>(total), static_cast<uint64_t>(total_skip));
- return 0;
- }
-
- const timer::Ticks duration =
- (total - overhead) - (total_skip - overhead_skip);
- results[i].input = unique[i];
- results[i].ticks = static_cast<float>(duration) * mul;
- results[i].variability = static_cast<float>(max_rel_mad);
- }
-
- return unique.size();
-}
-
-} // namespace hwy