IPN Progress Report 42-159 November 15, 2004

Selecting the Golomb Parameter in Rice Coding

A. Kiely!

We examine the use of Golomb-power-of-2 (GPO2) codes to efficiently and loss-
lessly encode sequences of nonnegative integers from a discrete source. Specifically,
we're interested in the problem of selecting which GPO2 code to use for a source or
a block of samples; this problem is at the heart of the well-known Rice entropy cod-
ing algorithm. We’re particularly concerned with the case where the mean sample
value is known or can be estimated.

We derive bounds on the optimum code parameter as a function of the mean
sample value. These bounds establish that no more than three possible code choices
can be optimum for a given mean sample value.

We derive a simple method to select the optimum GPO?2 code for a geometrically
distributed source given the mean value. We also devise a simpler code selection
procedure that generalizes previously known methods. Both code selection methods
can be implemented using only integer arithmetic and table look-ups, and require
no divisions.

We show that, for any source with known mean, the GPO2 code parameter
selected under this simple procedure is always within one of the optimum code
parameter for the source, and that the added cost due to suboptimum parameter
selection under this procedure is never more than 1/2 bit per sample and no more
than about 13 percent inefficiency.

We investigate the use of both code selection procedures as lower complexity
alternatives to Rice coding within the emerging Consultative Committee for Space
Data Systems (CCSDS) image compression standard. For the images tested, both
code selection methods produce negligible added rate compared to optimal code
selection as in Rice coding.

l. Introduction

We’d like to simply, adaptively, and compactly perform lossless encoding of the output of a discrete
source that produces nonnegative integer outputs. This problem arises in many data compression appli-
cations. We're specifically interested in selecting the optimum code choice from a particular subset of
Golomb codes.

I Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

For positive integer m, the mth Golomb code [1] defines a reversible prefix-free mapping of nonnegative
integers to variable length binary codewords. Golomb codes are optimum for geometrically distributed
sources: when ¢ is a geometrically distributed random variable, the appropriately selected Golomb code
minimizes expected codeword length over all possible lossless binary codes for § [2].

We restrict our choices to codes for which m = 2% for some nonnegative integer k. As noted in [1],
coding in this case becomes especially simple. The codeword for the integer § consists of the unary
representation of |§/2%| (that is, | /2% | zeros followed by a one) concatenated with the k least significant
bits of the binary representation of . Following the convention of [3], we refer to this special case as
a Golomb-power-of-2 (GPO2) code with parameter k, and we denote it by Gi. Such codes are used
in the Rice entropy coding algorithm [4,5] and the LOCO-I image compressor [3], among myriad other
applications.

Our problem of interest is to calculate or estimate the value of the GPO2 code parameter k that
minimizes the expected bit rate (the average number of encoded bits per source symbol) for a source.
This problem arises in Rice coding. The Rice algorithm encodes a block of samples using the best code
option for the block from among several candidate codes that consist mostly of different GPO2 codes.
A fixed number of bits are used preceding the encoded block to indicate which code was selected. The
Rice algorithm does not specify how to find the best code option, and the most common approach is to
exhaustively try each one. One of our interests is to save some computations in this process by making a
fast, though sometimes suboptimal, code selection when the mean value of ¢ is known or can be estimated.

Il. Analysis

A. Minimizing Code Rate

Using GPO2 code G to encode a nonnegative integer random variable § requires Lé / 2’“J + 1 bits for
the unary part and k bits for the remainder. Thus, the code rate (the expected number of coded bits per
sample) is

Ry, = i) (B’“J +1+ k> Prob[s = j] (bits/sample)

It can be shown that, for any fixed nonnegative integer j, the quantity Lj / 2kJ + 1+ k is convex U in k.
Since the above equation expresses Ry as a convex combination of terms of this form, Rj must also be
convex U in k. Consequently, a local minimum of Ry is also a global minimum, and so any nonnegative
integer k* satisfying

Ry < Rp»41 and Ry < Ry (1)

gives an optimum choice for the code parameter (we treat R_; as oo for this calculation). This fact could
be used to save some calculations used in the exhaustive approach to selecting the coding option in the
Rice algorithm, since once we have found an integer k* satisfying Condition (1), no further evaluation of
Ry, is needed.

In the following, we consider the problem of selecting the code parameter when we have an estimate
of the mean value y = E[d]. Such an estimate might be determined from previously encoded samples, or
in the case of a block-adaptive algorithm like Rice coding, we might explicitly compute the sample mean
for each block of samples.

Given y, the optimum GPO2 code parameter must be in the range [k, (1), k% . (p)], where

? Tmax

punt) = o {0, 1og, (304)|} Kiae() = max (0. Fog 1))

Figure 1 shows these bounds on the optimum code parameter value. For all p < 1, kX (1) = kX, (1) =0,
and hence the optimum parameter choice is £ = 0 over this region. For other values of u, the number
of possible optimum GPO2 parameter choices is limited to no more than three (this fact might save
calculations in some coding implementations); that is,

*
kmax

(1) = kfyin(p) <2 forall p

min

The expressions for k%, (1) and k%, (1) follow from bounds on the difference in rate achieved at two

max min

consecutive values of k:

(3)

The bounds in Eq. (3) are tight whenever k < k. (1t). These results are derived in Appendix A.

max

We can express the code rate in a way that emphasizes a dependence on u:

e

:k+1+2ik(uf?k) (4)

Here we define 7, as the expected value of

5 T T T | L T
i
E 4 - T
% kr%ax(u) E
< 3k PETTTTTL
w .
8 2 rmmmmmnai]
o [Kpin (1)
(Y] []
€ 1| R]
© '
"
0 ! 1 I 1 1 1 I 1 1 1 I 1 1 1
2t 20 2! 22 23 24 25

MEAN SAMPLE VALUE p

Fig. 1. Upper and lower bounds on optimum GPO2
code parameter choice as a function of sample

mean .

ro =6 — 2 H (5)

which is equal to the remainder obtained when dividing § by 2*.

Equation (4) can be used to derive the following tight upper and lower bounds on Ry as a function
of u:

RkSR};P(M)éMHZﬁk

ow pt1

The upper bound above follows from Eq. (4) and the fact that 7, > 0. Equality is achieved if all
sample values that are not multiples of 2¥ occur with probability zero. For any p, there always exists
a distribution with mean p satisfying this property; hence, this bound is tight. To establish the lower
bound on rate, we first note that, since 7, < 2 — 1, Eq. (4) implies that Ry > k + (u + 1)/2%. This is
satisfied with equality only if sample value j occurs with probability zero whenever j — (2% — 1) is not a
multiple of 2%, This isn’t possible when p < 2% — 1, when the rate can equal k + 1. Taking this fact into
account produces the lower bound above.

To identify the optimum code parameter using Condition (1), we note from Eq. (4) that Ry < Rix_1
if and only if

w> ok + 21 — Tk (6)

Since 7y = 0, we would select the code parameter to be zero when p < 2 — 71; otherwise we would select
it to be the largest positive integer k satisfying Eq. (6). We'd like to estimate the function 7y so that we
can apply Eq. (6) to select the code parameter given an estimate of u.

In a practical application, this code selection approach can be implemented using a table to store
values of 1, where we switch from one code parameter to the next. In Section ITI we follow this approach
using a geometric probability model for §, and in Section IV we consider a simpler alternative method of
selecting the code parameter.

B. Dynamic Range Limit and Uncoded Data

Two practical considerations affect some applications where families of GPO2 codes are used. First,
although Golomb codes allow arbitrarily large sample values, in a practical application samples are con-
strained by some maximum value, and this limits the range of coding options that need to be considered.
Second, many entropy coders allow an option for samples to be transmitted uncoded (as is commonly
done in Rice coding), and in this case the parameter selection procedure should include a rule for selecting
this option.

When sample values are constrained to some maximum number of bits IV, sending each sample uncoded
(or more precisely, encoded using the conventional unsigned N-bit binary integer representation) costs
N bits per sample. The code rate obtained using code Gy for any £ > N — 1 must be at least as large,
and so whenever we have the option of sending data uncoded, we would want to impose the constraint
that

k<N-2

This constraint isn’t completely vacuous. Under either of the parameter selection approaches described
in Sections IIT and IV, an estimate of p sufficiently close to the maximum sample value can result in
selecting GPO2 parameter k = N — 1 if we fail to consider the dynamic range limit and the option to
send samples uncoded.

lll. Coding a Geometric Source

A. Optimum Code Selection

Since Golomb codes optimally encode sources having geometric probability distributions, the use of
GPO2 codes in an entropy coder would seem to imply that the source being coded is approximately
geometric, and many practical sources fit this description. Consequently, to evaluate Tj in Eqs. (4)
and (6), we model 0 using a geometric probability distribution with parameter a € (0,1), i.e

Prob[d = j] = (1 — a)a?
Under this model,
el 3] S 0o o
oo (£+1)2F—1
—1-a) Y (-2

=0 j=r2k

co 2F—1

(1-« Z Z L‘oztw2

(=0 t=0

= 2k (1 L
R

Here we've made use of the fact that p = a/(1 — a) for a geometric distribution. Substituting this
expression for 7y into Eq. (4), we find that, for a geometric source,

1
szkﬂ-m (7)

Considering Condition (1) to determine the optimum code parameter, we find that Ry < Ry_; for a
geometric source if and only if

—-1>0

This inequality is a quadratic in o2 and is satisfied if and only if a2 > (v/5—1)/2, or equivalently,

log(¢ — 1)
log (_M)
w1

where the constant ¢ denotes the golden ratio (v/5 + 1)/2. Thus, if u < ¢, we would select k = 0;
otherwise we would select the code parameter to be the largest positive integer k satisfying the above
inequality. Thus, the optimum GPO2 code parameter for a geometric source with mean p is

k <1+ log,

, log(¢ — 1)
7
tog (u + 1)

A practical way to implement this parameter selection rule is to use a table that stores the values of pu,
where we switch from one parameter choice to the next. We define iy = 0 and for k£ > 0 define

kro(p) =max < 0, 14 [log

geo

(8)

1

He = ey

which is the smallest value of u for which parameter k is at least as good as k — 1. A necessary and
sufficient condition for an integer k to be an optimum GPO2 code parameter value is that

i < < i 9)

and so we can determine the code parameter by comparing an estimate of p with quantities in the table
of pj values.

Alternatively, instead of using a table of floating point values pg, 1}, - - -, we can eliminate the use of

floating point numbers by using a rational approximation to each uj. We can do this by producing a
table of integers Qar(0), Qar(1), - - -, where

Q)2 | i+ 5

for some fixed integer M, so that uf ~ (1/M)Qn (k). If we're selecting the GPO2 code for a block of

J samples &g, d1,---,d5_1, as is done in Rice coding, we could compute the sum of the sample values in
the block
J—1
S=Y 4
i=0

and use the sample mean S/.J as our estimate for p. In this case, the parameter selection rule (9) can be
implemented by selecting the code parameter to be the unique integer k such that

J-Quk) < M-S<J-Quk+1)

This approach eliminates the need for divisions or floating point arithmetic. If the block size J doesn’t
change from block to block, then we can eliminate the multiplications above by selecting M = J. Oth-
erwise, selecting M to be a power of two allows multiplications by M to be computed using bit-shift
operations.

In Section V, we give an example of the performance of this strategy when used as part of an image
compression application.

B. Sending Uncoded Data

As discussed in Section I1.B, a couple of modifications to the parameter selection strategy are required
when samples are constrained to N bits and we have the option of sending uncoded data. First, we
impose the constraint on our parameter selection procedure that £ < N — 2, which limits the size of the
table needed for parameter selection.

Next, we need to determine a rule for selecting uncoded data. Under the N-bit dynamic range limit,
the use of uncoded data beats the GPO2 code with parameter k = N — 2 whenever N < Ry_5. Using
the code rate for a geometric source given in Eq. (7), this condition turns out to be equivalent to

ta_ 1
f=HN = oN

t

It can be shown that p > pp implies that Ry_3 > Ry_2 for a geometric source, and since Ry, is convex
U in k, we conclude that the above condition is a sufficient test to determine when uncoded data should
be used.

Thus, the modified strategy is to first compare p to ,u;[\, to see whether sample values should be
transmitted uncoded.? If not, then we use the parameter selection strategy of Section III.A with the
constraint that k < N — 2.

C. Relative Redundancy
When using code Gy, to encode the output of a geometrically distributed source, the relative redundancy

is
R, —H
H

where the code rate Ry is given in Eq. (7), and H denotes the entropy of a geometric source:

H— % [~ (1—a)log,(1 —a) —alogya] (bits)

= (14 p)logy(1 + p) — pulogy pu (Dits)

Figure 2 shows relative redundancy versus u for a geometric source when encoded using the optimum
GPO2 code selected according to Eq.(8). The peaks in the curve correspond to values of p where we
switch from one code to the next.

21t is straightforward to construct an approximate equivalent test that requires only integer arithmetic, and we omit the
details.

0.05

0.04 -

0.08 -

0.02

0.01 -

RELATIVE REDUNDANCY

0.00

o1 20 21 22 23 o4 25
MEAN SAMPLE VALUE p

Fig. 2. Relative redundancy for a geometric source
with mean 1 when coded using the optimum GPO2
code.

Since the source entropy approaches zero as p approaches zero, the relative redundancy is unbounded,
as is the case for any coding scheme that assigns a distinct codeword to each output value. When u < 1,
approaches such as runlength coding give better performance (see, for example, [6,7]). When p > 1, the
relative redundancy is largest when the optimum GPO2 code switches from Gy to Gy, which occurs when
1 = ¢, in which case the relative redundancy is

1
e — 1 0.042
(3 —¢)logy &

or about 4.2 percent.

IV. A Simple Code Parameter Selection Rule

A. A Simple Rate Approximation

The quantity 7y, defined in Eq. (5), is nonnegative and has a maximum value of 2 — 1. As a simple
approximation, we might estimate 7, to be some constant fraction f € [0, 1] of this maximum value, i.e.,
approximate 7y as (2k —1)f. This approximation isn’t necessarily very accurate for sources encountered
in practice, but it leads to a simple parameter estimation rule that turns out to give good performance.

Under this approximation, Condition (6) reduces to p > 2F — f, and thus we use k = 0 if u+ f < 1;
otherwise we select the code parameter to be the unique nonnegative integer k satisfying

i.e., select

kg (1) = max {0, [logy (1 + f)]} (10)

We'll refer to this method as the simple code selection approach using parameter f. As an indication
that the simple approach is reasonable, we note that it always yields a value within the range of possibly
optimum parameters identified in Eq. (2):

Finin (1) < kg (1) < (1) for all f € [0, 1] (11)

Parameter estimation rules with this same general form have been developed previously by other
researchers. The case where f = 1/2 was suggested by Pen-Shu Yeh,? and a similar parameter selection
rule (for a slightly different coding problem, effectively with f = 0) is used as part of the LOCO-I
algorithm [3]. As noted in [3], the parameter value can be computed using a simple C source code
fragment:

for (k = 0; (1<<k)<=p+f:k++)

)

The simple parameter selection approach is never far from optimum. For any discrete source producing
nonnegative integer outputs with mean pu, the optimum GPO2 code parameter never differs from the code
parameter value selected under the simple approach by more than one, for any f € [0,1]. This follows
from Eq. (11) and from the fact that

Fax (1) =1 < kg () < k() +1 for all f € [0, 1] (12)

which is proved in Appendix B.

In an application where we have the option of transmitting samples uncoded, we can use the rule for
selecting uncoded data described in Section II1.B.

B. Performance on a Geometric Source

As an example illustrating the performance of the simple parameter selection rule, Fig. 3 shows the
relative redundancy for a geometric source when we choose f = 1/3. The relative redundancy is higher
than the optimum shown in Fig. 2 whenever the selected parameter differs from the optimum given in
Eq. (8). A consequence of Egs. (11) and (12) is that, for any f € [0, 1], I%f() and kg, (1) never differ by
more than one:

0.05 LI | T T T T
= =2 k=3 k=4
5
g o004} .
<
[m)
P4
D 003 =
[a)]
L
2 ey
g 0.02 - —
~
S
o 0.01
ass
0.00 FETI IR RT TR
21 23 o4 o5

MEAN SAMPLE VALUE pn

Fig. 3. Relative redundancy for a geometric source
with mean p when coded using the GPO2 code
selected using the simple approach with f=1/3.

3 P.-S. Yeh, personal communication, May 2004.

Kgeo(t) =1 < kp(n) < koo () +1 for all f€[0,1]

The simple code selection rule of Section IV.A depends on an unspecified constant f, and so the
obvious question is: how should we select the value of f7 As we've argued in Section III, it seems
reasonable to assume a geometric source model in a coding application that relies on Golomb codes.
Since l;:f(p) = kgoo(p) = 0 for all u < 1, a reasonable approach would be to select f to minimize the
maximum relative redundancy obtained for a geometric source with mean g > 1.4

When p > 1, the maximum relative redundancy occurs at the point where we switch from code Gy to
G1, which, for the simple strategy, occurs at 4 = 2 — f. Thus, for a geometric source we minimize the
maximum additional relative redundancy due to suboptimum parameter selection by selecting f so that
the heuristic strategy matches the optimum strategy at this point. This is achieved by setting f = f*,
where

fr=2—pt=2-¢~0.382

Figure 4 shows the relative redundancy under this choice of f. For a geometric source, this choice gives
the same maximum relative redundancy (about 4.2 percent) as obtained under the optimum parameter
selection strategy when p > 1. As we'll see in Section V, in a typical Rice coding application this
inefficiency due to suboptimum parameter selection may be quite small compared to the added rate due
to overhead used to indicate the code selected.

If our estimate of p is computed as the ratio of a sum of sample values (an integer S) divided by a
number of samples J, and we approximate f* as a ratio of integers A and B, then our strategy is to select
code parameter 0 when 1 > p+ f* ~ S/J + A/B; otherwise select the code parameter to be the largest
nonnegative integer k satisfying

0.05

0.04

0.03 -

0.02

0.01 |-

RELATIVE REDUNDANCY

0.00

21 20 21 22 23 o4 25
MEAN SAMPLE VALUE p

Fig. 4. Relative redundancy for a geometric source
with mean p when coded using the GPO2 code
selected using the simple approach with f=f*.

4 Alternatively, we note that in some implementations setting f = 0 reduces the number of calculations required for
parameter selection.

10

or, equivalently,
J-B-2F<B-S+J-A

Note that here the parameter selection procedure requires no divisions or floating point operations. In
the C programming language, this can be implemented as

for (k=0; ((J*B) <<k) <=B*S+J*A; k++)

)

A good rational approximation to f* is 49/128. When the source is geometric with known mean, this
approximation results in a negligible increase in relative redundancy over using the exact value of f*.
Other good rational approximations to f* include 34/89 and 3/8.

As an indication of the practicality of this approach, we consider the size of the arithmetic registers
required to implement the simple code selection approach when used as part of the emerging Consultative
Committee for Space Data Systems (CCSDS) image compression standard [8]. In this application, the
blocklength J is at most 16 samples per block, each sample value 6 can be as large as 2! —1 (i.e., N < 10),
and the GPO2 code parameter k is no larger than 8. In this application, if we set A =49, B = 128 (i.e,
use 49/128 as our approximation to f*), then the above multiplications by B can be computed using
bit-shift operations. The quantity B¥S+J*A can be stored using a 21-bit unsigned integer, and (J*B)<<k
can be stored using a 19-bit unsigned integer.

C. Bounds on Inefficiency

Under the Rice coding algorithm, the optimum GPO2 code is determined for a block of samples; this
is typically done by exhaustively evaluating the code rate under each available option. By contrast, the
simple code selection approach allows us to select a code based only on the mean (or sum) of samples
in the block. Since this approach does not always select the optimum code, we’d like to bound the
maximum inefficiency due to suboptimum code selection. In this section, we derive bounds that apply to
any probability distribution on the nonnegative integers with known mean pu.

For given mean p, we’d like to determine the maximum possible performance cost (i.e., increased rate)
due to suboptimum code selection when we use the simple rule of Section IV.A—i.e., we’d like to calculate

pr(p) = max <R7A€f(u) — HEH Rk>

where the maximum is taken over all probability distributions on nonnegative integers with mean value p.

Since k #(p) is always within one of the optimum parameter choice, we can bound p¢(u) via bounds
on Ry — Ry—1 and Ry — Ry1 given in Eq. (3). Specifically, we define

3
e 3) (:u) > O
Ajm 2 {2 2k f
0, otherwise
1
At(e _H* 2
f () okp(m)+1 2

1

then
pr(1) < pf (1) = max {07 A% (w), A?(u)}

This bounds the worst-case rate increase arising from using the simple parameter selection rule rather
than selecting the optimum code, as in true Rice coding. Figure 5 shows this bound on added rate for
f=0and f = f*. We note that p}' (1) < 1/2; thus, when p is known, the cost of using this suboptimum
code selection procedure is never more than 1/2 bit per sample, for any choice of f. In Section V, we’ll
see that on a practical source it may be extremely small.

We can also bound the maximum relative inefficiency due to suboptimum code selection when we use
the simple rule of Section IV.A. We define

R — Rk p+(iu’)
Bl 2 Rhst) “ T Frae '3
#(p) = max max Ry, - ke[k;‘ninr(r;lja)’(f&ax(ﬂ)] RY () "

where the first maximum is taken over all probability distributions on nonnegative integers with mean
value p. Note that ® () is the maximum relative inefficiency compared to coding using the optimally se-
lected GPO2 code, and is not the same as the relative redundancy, which measures the relative inefficiency
compared to the source entropy. The bound in Eq. (13) is probably not very tight.

In Fig. 6, we plot the bound of Eq. (13) as a function of p when f = 0 and f = f*. When f = 0,
the bound has maximum value of 1/5 at u = 2, and when f = f*, the bound reaches maximum value of
(46—5)/11 = 0.13 at u = ¢. Thus, when we choose f = f*, the maximum inefficiency due to suboptimum
parameter selection is no more than about 13 percent.

04

0.1 -

ADDED RATE, bits/sample

0.0

21 20 21 22 28 o4 25
MEAN SAMPLE VALUE n

Fig. 5. Plot of g; (1), an upper bound on p (), the

maximum added rate due to suboptimum GPO2 code

selection as a function of source mean y, when f=0
(dashed curve) and f= f* (solid curve).

12

0.20 T 7 T T T T T T T T T
[
> AT
0 F=0;
& o015 3 : -
O 3
T
L ”
2 ool . i
g f=f*
z
S 005 .
L
o ey
0-00 1 I 1 1 1 I 1 1 1 I 1 1 1
27t 0 21 22 28 24 25

MEAN SAMPLE VALUE n

Fig. 6. Bound on @ (1) (maximum relative inefficien-
cy due to suboptimum GPO2 code selection) as a
function of source mean , when f = 0 (dashed curve)
and f= f* (solid curve).

V. Empirical Results

As a practical test, we compare the performance of the parameter selection techniques of Sections III
and IV with optimum parameter selection (Rice coding) when applied to block coding of test image data
as part of the current draft CCSDS image compression standard [8].

The draft CCSDS standard calls for three stages of two-dimensional discrete wavelet transform (DWT)
decomposition of the input image. For our experiment, we use the 9/7-M integer DWT using the imple-
mentation described in [9]. In the initial coding stage of the CCSDS compressor, DWT coefficients in the
lowest spatial frequency subband are uniformly quantized, and differences between successive quantized
coefficients are mapped to nonnegative integers using the procedure described in Appendix C. Each block
(of typically 16) of these nonnegative integer values is then encoded using a GPO2 code or transmitted
uncoded.

For our test data, we use the “forest_2kb4,” “india_2kb4,” and “ice_2kb1” images from a set of test
images used in the development of the CCSDS standard. Each of these images is taken from a single
band of advanced very high resolution radiometer (AVHRR) instrument data. FEach image contains
2048 x 2048 pixels at a bit depth of 10 bits/pixel. Combining data from the lowest spatial frequency
subband from each image provides a total of 3 x 21¢ samples for our test. Coding (and code selection) is
performed on blocks of 16 consecutive samples. In our test, we vary the dynamic range of the input data
(i.e., bit depth N) by varying the uniform quantizer applied to the DWT coefficients.

In this application, we evaluated the performance of the code selection method of Section III tuned
to a geometric source, and the simple method of Section IV setting the parameter f equal to 0, 1/2, and
49/128 (this last value is chosen to be a rational approximation to f* as described in Section IV.B). We
measured the average difference in code rate between the given code selection method and the optimum
code choice, which was determined by exhaustively trying each code option for every block (as is typically
done in Rice coding). Figure 7 plots the added rate of each method due to suboptimum code selection
as we vary the dynamic range of the input (the bit depth V), and Fig. 8 shows the relative inefficiency
due to suboptimum code selection.

13

ADDED RATE COMPARED
TO RICE CODING, bits/pixel

RELATIVE INEFFICIENCY
COMPARED TO RICE CODING

I
0.008 |- .
0.006 |- |
f=49/1128
0.004 |-
o
0.002 MODEL |
0.000 ! !
3 4 5 6 7 8 9 10

INPUT BIT DEPTH N

Fig. 7. Added rate due to suboptimum GPO2 code
selection on the test data.

0.008 -

GEOMETRIC
MODEL

0.002 [~

f=49/128
0.001

0.000 | | | | | |

INPUT BIT DEPTH N

Fig. 8. Relative inefficiency due to suboptimum GPO2
code selection on the test data.

Figures 7 and 8 show that, under the parameter selection method of Section IV.B, setting f equal to
49/128 gives the best performance of the choices of f that we tested. The parameter selection method of
Section III, which is optimized for a geometric source, gives even better performance when N is sufficiently
large. Note that, in all cases tested, the added redundancy is extremely small compared to the bounds
of Section IV.C, and the relative inefficiency is less than 0.4 percent in all cases.

For this data set, the cost of using a heuristic parameter selection strategy rather than optimum Rice
coding is negligible compared to the overhead of using a block-adaptive approach in the first place. Under
the method proposed in the CCSDS standard, the cost of overhead bits used to specify the code option
selected exceeds 0.05 bit per sample, which is much higher than the average added redundancy of any of
the parameter selection strategies considered.

On the basis of these results, the simple code selection approach, setting f equal to 49/128 currently
is being considered as a low-complexity option as part of the CCSDS standard.

14

VI. Conclusion

The Rice algorithm’s brute-force coding approach is perhaps the ultimate in conceptual simplicity
among adaptive entropy coding techniques. Each block of samples is independently coded, so there are
no statistics to track from one block to the next. No parameter estimation is performed. One simply
tries several code options and picks the best one for the block.

However, the conceptual simplicity of the Rice coding paradigm brings with it some inherent limitations
in terms of implementation complexity and compression effectiveness.

In practice, the complexity of Rice coding implementations is generally high because they tend to
rely on separate evaluation of each code option for every block of samples. In Section II we’ve shown
that when the sample mean for a block is known, no more than three GPO2 code options need to be
considered. We’ve also provided evidence that the use of simpler suboptimum code selection methods
results in little degradation in performance; however, such a reduced-complexity encoder is not, strictly
speaking, a Rice coder, since the simpler code selection methods do not always pick the optimum code
option.

By selecting the code option for each block independently, the Rice algorithm fails to exploit useful
information from previously coded blocks. This results in an inherent cost in added bit rate due to the
overhead bits needed with each block to identify the code selected. Using larger block sizes decreases this
bit-rate cost somewhat, but also reduces the ability to quickly adapt to changes in the source data.

The effectiveness of an adaptive entropy coder generally increases when it has more code options
available. For example, the relative redundancy shown in Fig. 2 for a geometric source could be made
lower for some values of p if additional Golomb codes (not just GPO2 codes) could be used. However,
the extent to which one can add coding options to improve the coding effectiveness of a Rice coder is
somewhat limited. Adding code options would increase the complexity of many entropy coders, but
the complexity increase becomes particularly significant in a Rice coding implementation where each
code option is tried explicitly on each block of samples. Moreover, the Rice coding paradigm imposes a
practical limit on the number of code options, because increasing the number of code options increases
the overhead required to indicate which code was selected for each block.

A sensible alternative to Rice coding is to adaptively select the code option based on estimates of
the mean value (or some other parameter) from recently encoded samples. This simple approach largely
avoids the deficiencies of Rice coding as it doesn’t require the evaluation of multiple coding options,
eliminates the need for overhead bits, and makes it more practical to incorporate additional code options.
The success of such an approach has been demonstrated in [3,6] among others.

In light of these considerations, for most applications it seems doubtful that the Rice coding approach
of optimizing the code selection for each block of data warrants the added complexity or the significant
overhead cost required to indicate the code option selected.

Acknowledgment

The author would like to thank Pen-Shu Yeh at NASA Goddard Space Flight
Center, whose previous work on the GPO2 code parameter selection problem in-
spired this article, and who has provided helpful feedback on this problem.

15

[1]

2]

References

S. W. Golomb, “Run-Length Encodings,” IEEE Transactions on Information
Theory, vol. IT-12, no. 3, pp. 399-401, July 1966.

R. G. Gallager and D. C. Van Voorhis, “Optimal Source Codes for Geometri-
cally Distributed Integer Alphabets,” IEEE Transactions on Information The-
ory, vol. IT-21, no. 2, pp. 228-230, March 1975.

M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE
Transactions on Image Processing, vol. 9, no. 8, pp. 1309-1324, August 2000.

R. F. Rice, “Some Practical Universal Noiseless Coding Techniques,” JPL Pub-
lication 79-22, Jet Propulsion Laboratory, Pasadena, California, March 15, 1979.

Consultative Committee for Space Data Systems, CCSDS 121.0-B-1: Lossless
Data Compression, Blue Book, issue 1, May 1997.
http://www.ccsds.org/CCSDS/documents/121x0b1.pdf

A. Kiely and M. Klimesh, “Generalized Golomb Codes and Adaptive Coding of
Wavelet-Transformed Image Subbands,” The Interplanetary Network Progress
Report 42-154, April-June 2003, Jet Propulsion Laboratory, Pasadena, Califor-
nia, pp. 1-14, August 15, 2003.

http://ipnpr.jpl.nasa.gov /tmo/progress_report /42-154/154F .pdf

K.-M. Cheung and A. Kiely, “An Efficient Variable Length Coding Scheme for an
IID Source,” Proceedings 1995 IEEE Data Compression Conference, Snowbird,
Utah, pp. 182-191, March 28-30, 1995.

P. S. Yeh, P. Armbruster, A. Kiely, B. Masschelein, G. Moury, and C. Schaefer,
“The New CCSDS Image Compression Recommendation,” Proceedings IEEE
Aerospace Conference 2005, Big Sky, Montana, March 5-12, 2005 (to appear).

M. D. Adams and F. Kossentini, “Reversible Integer-to-Integer Wavelet Trans-
forms for Image Compression: Performance Evaluation and Analysis,” IFEE
Transactions on Image Processing, vol. 9, no. 7, pp. 1010-1024, June 2000.

16

Appendix A
Bounds on Rate Differences

Section IT.A gives bounds on the difference between rates achieved with consecutive GPO2 codes, along
with constraints on the optimum code parameter value that arise from these bounds. In this appendix,
we derive these results.

First we derive the bounds of Eq. (3). For k > 0, we have

Ri — Rj1 :1+¥(B—%J - {%J)Prob[ézﬂ :1+; E—j;lJ Probl§ = j]

The upper and lower bounds on this difference, given in Eq. (3), follow immediately from this expression
combined with the following straightforward tight upper and lower bounds on the term in the above sum:

for any integer j (A-1)

The upper bound in Eq. (A-1) is met if and only if j — 2¥~! + 1 is a multiple of 2¥. As a result, the
upper bound in Eq. (3) holds with equality if and only if j — 2*~! + 1 is a multiple of 2* for each j that
occurs with nonzero probability. When u < 2= — 1, this isn’t possible and the upper bound in Eq. (3)

is weak; otherwise the upper bound is tight. Applying the definition of k%, (1) from Eq. (2), we see that
k < kX ,.(p) is a sufficient condition for the upper bound in Eq. (3) to be tight.

max

The lower bound in Eq. (A-1) is met if and only if j —2*~! is a multiple of 2¥, and similarly, the lower
bound of Eq. (3) is met with equality if and only if j is an odd multiple of 2¥~1 for each j that occurs
with nonzero probability. Thus, the lower bound of Eq. (3) is tight when p > 28=1, and so it’s tight when
k< Kax (1)

The bounds in Eq. (3) can be used to determine conditions on k and p that ensure that the difference
Ri — Ri_1 must be positive or must be negative, and thus constrain the range of code parameters that
can be optimum given p. Specifically, using k. (1) and k5. (1) as defined in Eq. (2), the upper bound of

Eq. (3) implies that Rp» (u) < Rz (w)-1, and the lower bound implies that Ry: () < Rgx (u)41. From

max
*
min

the convexity of the rate function, [k, (1), kfnax(1t)] thus includes the range of GPO2 code parameter

values that might be optimal given p.

The fact that the optimum GPO2 code parameter value lies in the range [k}, (1t), kfax(1)] constrains
the optimum parameter to at most three possible choices. That is, we can show that

k;knax(u’) - k;knm(/i) <3

It’s straightforward to show that this bound holds when p < 3. When p > 3, we derive the bound as
follows:

Kinax (1) — kmin (1) = [logy p] — Llogz gt 1)J < 1+logyp— <10g2 (3u> - 1> =2-log 5 <3

17

Appendix B
The Simple Code Selection Approach is Always Nearly Optimum

We now derive the bounds given in Eq. (12) of Section IV.

To establish Eq. (12), it is sufficient to show that k.. (1) — l%f(,u) < 2 and I%f(,u) -k

min(/l’) < 2. For
p < 3, it’s straightforward to show that k¢(n) — &, (1) < 1. For p > 3,

min

o 0) — K1) = Lo+ 1)) = [t (300 1)) | <o) (10w (304 1) 1)

p+f
=1 — 1 <1 2
0g, <M+1>+ 0g, 3 <logy 3 <

Next, it’s straightforward to show that k. (1) — kf(u) <1 whenever y <2 or f=0. When f > 0 and
B> 2,

Fnax (1) = kg (p) = [logg] — [logo(p + f)] <1+ logy pp — (logo(p + f) — 1) = 2+ log,

<2

I
p+f

Appendix C

Mapping Sample Differences to Nonnegative Integers in the
CCSDS Image Compression Standard

The emerging CCSDS image compression standard [8] relies on GPO2 codes to encode the values of
quantized DWT coefficients in the lowest spatial frequency subband of a DWT-transformed image. To
do this, differences between successive quantized coefficients, taken in raster-scan order, are mapped to
nonnegative integer values using essentially the same procedure incorporated in the CCSDS lossless data
compression standard [5].

In this encoding process, in the lowest spatial frequency subband, each quantized DW'T coefficient ¢,
is a signed N-bit quantity. Differences between successive quantized coefficients, ¢,, — ¢;,_1, are mapped
to nonnegative N-bit integers d,, according to

2(Cmfcm—1)a if 0 S Cm — Cm—1 Sem
Om =1 2|lem —em—1|—1, if =0, <c¢p—m—1 <0
Om + |Cm — ¢m—1|, otherwise

Here 0,, = min{c,,—1 + QN-1 oN—-1 _ 1 _ Cm—-1}, and we can treat c_; as equal to zero. A block of

J consecutive values of d,, are then encoded using a GPO2 code.

18

