summaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/clatm6.f
blob: 62ce57b13e1ccfb93a3b9e30f34dbca0fd768a16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
*> \brief \b CLATM6
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
*                          BETA, WX, WY, S, DIF )
*
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDX, LDY, N, TYPE
*       COMPLEX            ALPHA, BETA, WX, WY
*       ..
*       .. Array Arguments ..
*       REAL               DIF( * ), S( * )
*       COMPLEX            A( LDA, * ), B( LDA, * ), X( LDX, * ),
*      $                   Y( LDY, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLATM6 generates test matrices for the generalized eigenvalue
*> problem, their corresponding right and left eigenvector matrices,
*> and also reciprocal condition numbers for all eigenvalues and
*> the reciprocal condition numbers of eigenvectors corresponding to
*> the 1th and 5th eigenvalues.
*>
*> Test Matrices
*> =============
*>
*> Two kinds of test matrix pairs
*>          (A, B) = inverse(YH) * (Da, Db) * inverse(X)
*> are used in the tests:
*>
*> Type 1:
*>    Da = 1+a   0    0    0    0    Db = 1   0   0   0   0
*>          0   2+a   0    0    0         0   1   0   0   0
*>          0    0   3+a   0    0         0   0   1   0   0
*>          0    0    0   4+a   0         0   0   0   1   0
*>          0    0    0    0   5+a ,      0   0   0   0   1
*> and Type 2:
*>    Da = 1+i   0    0       0       0    Db = 1   0   0   0   0
*>          0   1-i   0       0       0         0   1   0   0   0
*>          0    0    1       0       0         0   0   1   0   0
*>          0    0    0 (1+a)+(1+b)i  0         0   0   0   1   0
*>          0    0    0       0 (1+a)-(1+b)i,   0   0   0   0   1 .
*>
*> In both cases the same inverse(YH) and inverse(X) are used to compute
*> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
*>
*> YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x
*>         0    1   -y    y   -y         0   1   x  -x  -x
*>         0    0    1    0    0         0   0   1   0   0
*>         0    0    0    1    0         0   0   0   1   0
*>         0    0    0    0    1,        0   0   0   0   1 , where
*>
*> a, b, x and y will have all values independently of each other.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TYPE
*> \verbatim
*>          TYPE is INTEGER
*>          Specifies the problem type (see further details).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          Size of the matrices A and B.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA, N).
*>          On exit A N-by-N is initialized according to TYPE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A and of B.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDA, N).
*>          On exit B N-by-N is initialized according to TYPE.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX, N).
*>          On exit X is the N-by-N matrix of right eigenvectors.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of X.
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*>          Y is COMPLEX array, dimension (LDY, N).
*>          On exit Y is the N-by-N matrix of left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*>          LDY is INTEGER
*>          The leading dimension of Y.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is COMPLEX
*>
*>          Weighting constants for matrix A.
*> \endverbatim
*>
*> \param[in] WX
*> \verbatim
*>          WX is COMPLEX
*>          Constant for right eigenvector matrix.
*> \endverbatim
*>
*> \param[in] WY
*> \verbatim
*>          WY is COMPLEX
*>          Constant for left eigenvector matrix.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (N)
*>          S(i) is the reciprocal condition number for eigenvalue i.
*> \endverbatim
*>
*> \param[out] DIF
*> \verbatim
*>          DIF is REAL array, dimension (N)
*>          DIF(i) is the reciprocal condition number for eigenvector i.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
*  =====================================================================
      SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
     $                   BETA, WX, WY, S, DIF )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDX, LDY, N, TYPE
      COMPLEX            ALPHA, BETA, WX, WY
*     ..
*     .. Array Arguments ..
      REAL               DIF( * ), S( * )
      COMPLEX            A( LDA, * ), B( LDA, * ), X( LDX, * ),
     $                   Y( LDY, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               RONE, TWO, THREE
      PARAMETER          ( RONE = 1.0E+0, TWO = 2.0E+0, THREE = 3.0E+0 )
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 50 )
      COMPLEX            WORK( 26 ), Z( 8, 8 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CABS, CMPLX, CONJG, REAL, SQRT
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGESVD, CLACPY, CLAKF2
*     ..
*     .. Executable Statements ..
*
*     Generate test problem ...
*     (Da, Db) ...
*
      DO 20 I = 1, N
         DO 10 J = 1, N
*
            IF( I.EQ.J ) THEN
               A( I, I ) = CMPLX( I ) + ALPHA
               B( I, I ) = ONE
            ELSE
               A( I, J ) = ZERO
               B( I, J ) = ZERO
            END IF
*
   10    CONTINUE
   20 CONTINUE
      IF( TYPE.EQ.2 ) THEN
         A( 1, 1 ) = CMPLX( RONE, RONE )
         A( 2, 2 ) = CONJG( A( 1, 1 ) )
         A( 3, 3 ) = ONE
         A( 4, 4 ) = CMPLX( REAL( ONE+ALPHA ), REAL( ONE+BETA ) )
         A( 5, 5 ) = CONJG( A( 4, 4 ) )
      END IF
*
*     Form X and Y
*
      CALL CLACPY( 'F', N, N, B, LDA, Y, LDY )
      Y( 3, 1 ) = -CONJG( WY )
      Y( 4, 1 ) = CONJG( WY )
      Y( 5, 1 ) = -CONJG( WY )
      Y( 3, 2 ) = -CONJG( WY )
      Y( 4, 2 ) = CONJG( WY )
      Y( 5, 2 ) = -CONJG( WY )
*
      CALL CLACPY( 'F', N, N, B, LDA, X, LDX )
      X( 1, 3 ) = -WX
      X( 1, 4 ) = -WX
      X( 1, 5 ) = WX
      X( 2, 3 ) = WX
      X( 2, 4 ) = -WX
      X( 2, 5 ) = -WX
*
*     Form (A, B)
*
      B( 1, 3 ) = WX + WY
      B( 2, 3 ) = -WX + WY
      B( 1, 4 ) = WX - WY
      B( 2, 4 ) = WX - WY
      B( 1, 5 ) = -WX + WY
      B( 2, 5 ) = WX + WY
      A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
      A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
      A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
      A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
      A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
      A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
*
*     Compute condition numbers
*
      S( 1 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
     $         ( RONE+CABS( A( 1, 1 ) )*CABS( A( 1, 1 ) ) ) )
      S( 2 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
     $         ( RONE+CABS( A( 2, 2 ) )*CABS( A( 2, 2 ) ) ) )
      S( 3 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 3, 3 ) )*CABS( A( 3, 3 ) ) ) )
      S( 4 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 4, 4 ) )*CABS( A( 4, 4 ) ) ) )
      S( 5 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 5, 5 ) )*CABS( A( 5, 5 ) ) ) )
*
      CALL CLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 )
      CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
     $             WORK( 3 ), 24, RWORK( 9 ), INFO )
      DIF( 1 ) = RWORK( 8 )
*
      CALL CLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 )
      CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
     $             WORK( 3 ), 24, RWORK( 9 ), INFO )
      DIF( 5 ) = RWORK( 8 )
*
      RETURN
*
*     End of CLATM6
*
      END