1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
*> \brief \b ZTPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
* TSCAL, X, LDX, B, LDB, WORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER LDB, LDX, N, NRHS
* DOUBLE PRECISION RESID, SCALE, TSCAL
* ..
* .. Array Arguments ..
* DOUBLE PRECISION CNORM( * )
* COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTPT03 computes the residual for the solution to a scaled triangular
*> system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b,
*> when the triangular matrix A is stored in packed format. Here A**T
*> denotes the transpose of A, A**H denotes the conjugate transpose of
*> A, s is a scalar, and x and b are N by NRHS matrices. The test ratio
*> is the maximum over the number of right hand sides of
*> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': A *x = s*b (No transpose)
*> = 'T': A**T *x = s*b (Transpose)
*> = 'C': A**H *x = s*b (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices X and B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L',
*> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> The scaling factor s used in solving the triangular system.
*> \endverbatim
*>
*> \param[in] CNORM
*> \verbatim
*> CNORM is DOUBLE PRECISION array, dimension (N)
*> The 1-norms of the columns of A, not counting the diagonal.
*> \endverbatim
*>
*> \param[in] TSCAL
*> \verbatim
*> TSCAL is DOUBLE PRECISION
*> The scaling factor used in computing the 1-norms in CNORM.
*> CNORM actually contains the column norms of TSCAL*A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,NRHS)
*> The computed solution vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> The right hand side vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> The maximum over the number of right hand sides of
*> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
$ TSCAL, X, LDX, B, LDB, WORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION RESID, SCALE, TSCAL
* ..
* .. Array Arguments ..
DOUBLE PRECISION CNORM( * )
COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER IX, J, JJ
DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IZAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IZAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZDSCAL, ZTPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
EPS = DLAMCH( 'Epsilon' )
SMLNUM = DLAMCH( 'Safe minimum' )
*
* Compute the norm of the triangular matrix A using the column
* norms already computed by ZLATPS.
*
TNORM = 0.D0
IF( LSAME( DIAG, 'N' ) ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
JJ = 1
DO 10 J = 1, N
TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
JJ = JJ + J
10 CONTINUE
ELSE
JJ = 1
DO 20 J = 1, N
TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
JJ = JJ + N - J + 1
20 CONTINUE
END IF
ELSE
DO 30 J = 1, N
TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
30 CONTINUE
END IF
*
* Compute the maximum over the number of right hand sides of
* norm(op(A)*x - s*b) / ( norm(A) * norm(x) * EPS ).
*
RESID = ZERO
DO 40 J = 1, NRHS
CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
IX = IZAMAX( N, WORK, 1 )
XNORM = MAX( ONE, ABS( X( IX, J ) ) )
XSCAL = ( ONE / XNORM ) / DBLE( N )
CALL ZDSCAL( N, XSCAL, WORK, 1 )
CALL ZTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
CALL ZAXPY( N, DCMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
IX = IZAMAX( N, WORK, 1 )
ERR = TSCAL*ABS( WORK( IX ) )
IX = IZAMAX( N, X( 1, J ), 1 )
XNORM = ABS( X( IX, J ) )
IF( ERR*SMLNUM.LE.XNORM ) THEN
IF( XNORM.GT.ZERO )
$ ERR = ERR / XNORM
ELSE
IF( ERR.GT.ZERO )
$ ERR = ONE / EPS
END IF
IF( ERR*SMLNUM.LE.TNORM ) THEN
IF( TNORM.GT.ZERO )
$ ERR = ERR / TNORM
ELSE
IF( ERR.GT.ZERO )
$ ERR = ONE / EPS
END IF
RESID = MAX( RESID, ERR )
40 CONTINUE
*
RETURN
*
* End of ZTPT03
*
END
|