summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zrqt03.f
blob: 2329bbecdd52fe5f034899b7b76cb32dcd27107b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
*> \brief \b ZRQT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE ZRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RESULT( * ), RWORK( * )
*       COMPLEX*16         AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
*      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZRQT03 tests ZUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.
*>
*> ZRQT03 compares the results of a call to ZUNMRQ with the results of
*> forming Q explicitly by a call to ZUNGRQ and then performing matrix
*> multiplication by a call to ZGEMM.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows or columns of the matrix C; C is n-by-m if
*>          Q is applied from the left, or m-by-n if Q is applied from
*>          the right.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the orthogonal matrix Q.  N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          orthogonal matrix Q.  N >= K >= 0.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is COMPLEX*16 array, dimension (LDA,N)
*>          Details of the RQ factorization of an m-by-n matrix, as
*>          returned by ZGERQF. See CGERQF for further details.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] CC
*> \verbatim
*>          CC is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays AF, C, CC, and Q.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors corresponding
*>          to the RQ factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.  LWORK must be at least M, and should be
*>          M*NB, where NB is the blocksize for this environment.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (4)
*>          The test ratios compare two techniques for multiplying a
*>          random matrix C by an n-by-n orthogonal matrix Q.
*>          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
*>          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
*>          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
*>          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
      COMPLEX*16         AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         ROGUE
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, ISIDE, ITRANS, J, MC, MINMN, NC
      DOUBLE PRECISION   CNORM, EPS, RESID
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           LSAME, DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZLACPY, ZLARNV, ZLASET, ZUNGRQ, ZUNMRQ
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEED / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
      MINMN = MIN( M, N )
*
*     Quick return if possible
*
      IF( MINMN.EQ.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RESULT( 3 ) = ZERO
         RESULT( 4 ) = ZERO
         RETURN
      END IF
*
*     Copy the last k rows of the factorization to the array Q
*
      CALL ZLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( K.GT.0 .AND. N.GT.K )
     $   CALL ZLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
     $                Q( N-K+1, 1 ), LDA )
      IF( K.GT.1 )
     $   CALL ZLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
     $                Q( N-K+2, N-K+1 ), LDA )
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'ZUNGRQ'
      CALL ZUNGRQ( N, N, K, Q, LDA, TAU( MINMN-K+1 ), WORK, LWORK,
     $             INFO )
*
      DO 30 ISIDE = 1, 2
         IF( ISIDE.EQ.1 ) THEN
            SIDE = 'L'
            MC = N
            NC = M
         ELSE
            SIDE = 'R'
            MC = M
            NC = N
         END IF
*
*        Generate MC by NC matrix C
*
         DO 10 J = 1, NC
            CALL ZLARNV( 2, ISEED, MC, C( 1, J ) )
   10    CONTINUE
         CNORM = ZLANGE( '1', MC, NC, C, LDA, RWORK )
         IF( CNORM.EQ.ZERO )
     $      CNORM = ONE
*
         DO 20 ITRANS = 1, 2
            IF( ITRANS.EQ.1 ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'C'
            END IF
*
*           Copy C
*
            CALL ZLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
*
*           Apply Q or Q' to C
*
            SRNAMT = 'ZUNMRQ'
            IF( K.GT.0 )
     $         CALL ZUNMRQ( SIDE, TRANS, MC, NC, K, AF( M-K+1, 1 ), LDA,
     $                      TAU( MINMN-K+1 ), CC, LDA, WORK, LWORK,
     $                      INFO )
*
*           Form explicit product and subtract
*
            IF( LSAME( SIDE, 'L' ) ) THEN
               CALL ZGEMM( TRANS, 'No transpose', MC, NC, MC,
     $                     DCMPLX( -ONE ), Q, LDA, C, LDA,
     $                     DCMPLX( ONE ), CC, LDA )
            ELSE
               CALL ZGEMM( 'No transpose', TRANS, MC, NC, NC,
     $                     DCMPLX( -ONE ), C, LDA, Q, LDA,
     $                     DCMPLX( ONE ), CC, LDA )
            END IF
*
*           Compute error in the difference
*
            RESID = ZLANGE( '1', MC, NC, CC, LDA, RWORK )
            RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
     $         ( DBLE( MAX( 1, N ) )*CNORM*EPS )
*
   20    CONTINUE
   30 CONTINUE
*
      RETURN
*
*     End of ZRQT03
*
      END