1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
SUBROUTINE ZQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( * ), RWORK( * )
COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
$ Q( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
*
* ZQRT03 compares the results of a call to ZUNMQR with the results of
* forming Q explicitly by a call to ZUNGQR and then performing matrix
* multiplication by a call to ZGEMM.
*
* Arguments
* =========
*
* M (input) INTEGER
* The order of the orthogonal matrix Q. M >= 0.
*
* N (input) INTEGER
* The number of rows or columns of the matrix C; C is m-by-n if
* Q is applied from the left, or n-by-m if Q is applied from
* the right. N >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* orthogonal matrix Q. M >= K >= 0.
*
* AF (input) COMPLEX*16 array, dimension (LDA,N)
* Details of the QR factorization of an m-by-n matrix, as
* returnedby ZGEQRF. See CGEQRF for further details.
*
* C (workspace) COMPLEX*16 array, dimension (LDA,N)
*
* CC (workspace) COMPLEX*16 array, dimension (LDA,N)
*
* Q (workspace) COMPLEX*16 array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays AF, C, CC, and Q.
*
* TAU (input) COMPLEX*16 array, dimension (min(M,N))
* The scalar factors of the elementary reflectors corresponding
* to the QR factorization in AF.
*
* WORK (workspace) COMPLEX*16 array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The length of WORK. LWORK must be at least M, and should be
* M*NB, where NB is the blocksize for this environment.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION array, dimension (4)
* The test ratios compare two techniques for multiplying a
* random matrix C by an m-by-m orthogonal matrix Q.
* RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS )
* RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS )
* RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
* RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
* ..
* .. Local Scalars ..
CHARACTER SIDE, TRANS
INTEGER INFO, ISIDE, ITRANS, J, MC, NC
DOUBLE PRECISION CNORM, EPS, RESID
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZLACPY, ZLARNV, ZLASET, ZUNGQR, ZUNMQR
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX
* ..
* .. Scalars in Common ..
CHARACTER(32) SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEED / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the first k columns of the factorization to the array Q
*
CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
CALL ZLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
* Generate the m-by-m matrix Q
*
SRNAMT = 'ZUNGQR'
CALL ZUNGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
DO 30 ISIDE = 1, 2
IF( ISIDE.EQ.1 ) THEN
SIDE = 'L'
MC = M
NC = N
ELSE
SIDE = 'R'
MC = N
NC = M
END IF
*
* Generate MC by NC matrix C
*
DO 10 J = 1, NC
CALL ZLARNV( 2, ISEED, MC, C( 1, J ) )
10 CONTINUE
CNORM = ZLANGE( '1', MC, NC, C, LDA, RWORK )
IF( CNORM.EQ.ZERO )
$ CNORM = ONE
*
DO 20 ITRANS = 1, 2
IF( ITRANS.EQ.1 ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
* Copy C
*
CALL ZLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
*
* Apply Q or Q' to C
*
SRNAMT = 'ZUNMQR'
CALL ZUNMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
$ WORK, LWORK, INFO )
*
* Form explicit product and subtract
*
IF( LSAME( SIDE, 'L' ) ) THEN
CALL ZGEMM( TRANS, 'No transpose', MC, NC, MC,
$ DCMPLX( -ONE ), Q, LDA, C, LDA,
$ DCMPLX( ONE ), CC, LDA )
ELSE
CALL ZGEMM( 'No transpose', TRANS, MC, NC, NC,
$ DCMPLX( -ONE ), C, LDA, Q, LDA,
$ DCMPLX( ONE ), CC, LDA )
END IF
*
* Compute error in the difference
*
RESID = ZLANGE( '1', MC, NC, CC, LDA, RWORK )
RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
$ ( DBLE( MAX( 1, M ) )*CNORM*EPS )
*
20 CONTINUE
30 CONTINUE
*
RETURN
*
* End of ZQRT03
*
END
|