summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zptt02.f
blob: 0e2bfc3957ad89a8bfc0c6a8ab8fc34d46b516f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
*> \brief \b ZPTT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDB, LDX, N, NRHS
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * )
*       COMPLEX*16         B( LDB, * ), E( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPTT02 computes the residual for the solution to a symmetric
*> tridiagonal system of equations:
*>    RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the superdiagonal or the subdiagonal of the
*>          tridiagonal matrix A is stored.
*>          = 'U':  E is the superdiagonal of A
*>          = 'L':  E is the subdiagonal of A
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGTER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The n by nrhs matrix of solution vectors X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the n by nrhs matrix of right hand side vectors B.
*>          On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(B - A*X) / (norm(A) * norm(X) * EPS)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDB, LDX, N, NRHS
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * )
      COMPLEX*16         B( LDB, * ), E( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANHT
      EXTERNAL           DLAMCH, DZASUM, ZLANHT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLAPTM
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of the tridiagonal matrix A.
*
      ANORM = ZLANHT( '1', N, D, E )
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute B - A*X.
*
      CALL ZLAPTM( UPLO, N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         BNORM = DZASUM( N, B( 1, J ), 1 )
         XNORM = DZASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of ZPTT02
*
      END