summaryrefslogtreecommitdiff
path: root/TESTING/LIN/zlahilb.f
blob: 98c0303dbc5a82a9d25377ded865530b0803c73b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
*> \brief \b ZLAHILB
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLAHILB(N, NRHS, A, LDA, X, LDX, B, LDB, WORK,
*            INFO, PATH)
*
*       .. Scalar Arguments ..
*       INTEGER N, NRHS, LDA, LDX, LDB, INFO
*       .. Array Arguments ..
*       DOUBLE PRECISION WORK(N)
*       COMPLEX*16 A(LDA,N), X(LDX, NRHS), B(LDB, NRHS)
*       CHARACTER*3 PATH
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAHILB generates an N by N scaled Hilbert matrix in A along with
*> NRHS right-hand sides in B and solutions in X such that A*X=B.
*>
*> The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all
*> entries are integers.  The right-hand sides are the first NRHS
*> columns of M * the identity matrix, and the solutions are the
*> first NRHS columns of the inverse Hilbert matrix.
*>
*> The condition number of the Hilbert matrix grows exponentially with
*> its size, roughly as O(e ** (3.5*N)).  Additionally, the inverse
*> Hilbert matrices beyond a relatively small dimension cannot be
*> generated exactly without extra precision.  Precision is exhausted
*> when the largest entry in the inverse Hilbert matrix is greater than
*> 2 to the power of the number of bits in the fraction of the data type
*> used plus one, which is 24 for single precision.
*>
*> In single, the generated solution is exact for N <= 6 and has
*> small componentwise error for 7 <= N <= 11.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is NRHS
*>          The requested number of right-hand sides.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA, N)
*>          The generated scaled Hilbert matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= N.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX, NRHS)
*>          The generated exact solutions.  Currently, the first NRHS
*>          columns of the inverse Hilbert matrix.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= N.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is REAL array, dimension (LDB, NRHS)
*>          The generated right-hand sides.  Currently, the first NRHS
*>          columns of LCM(1, 2, ..., 2*N-1) * the identity matrix.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          = 1: N is too large; the data is still generated but may not
*>               be not exact.
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
*> \param[in] PATH
*> \verbatim
*>          PATH is CHARACTER*3
*>          The LAPACK path name.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZLAHILB(N, NRHS, A, LDA, X, LDX, B, LDB, WORK,
     $     INFO, PATH)
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER N, NRHS, LDA, LDX, LDB, INFO
*     .. Array Arguments ..
      DOUBLE PRECISION WORK(N)
      COMPLEX*16 A(LDA,N), X(LDX, NRHS), B(LDB, NRHS)
      CHARACTER*3 PATH
*     ..
*
*  =====================================================================
*     .. Local Scalars ..
      INTEGER TM, TI, R
      INTEGER M
      INTEGER I, J
      COMPLEX*16 TMP
      CHARACTER*2 C2
*     ..
*     .. Parameters ..
*     NMAX_EXACT   the largest dimension where the generated data is
*                  exact.
*     NMAX_APPROX  the largest dimension where the generated data has
*                  a small componentwise relative error.
*     ??? complex uses how many bits ???
      INTEGER NMAX_EXACT, NMAX_APPROX, SIZE_D
      PARAMETER (NMAX_EXACT = 6, NMAX_APPROX = 11, SIZE_D = 8)
*
*     d's are generated from random permuation of those eight elements.
      COMPLEX*16 d1(8), d2(8), invd1(8), invd2(8)
      DATA D1 /(-1,0),(0,1),(-1,-1),(0,-1),(1,0),(-1,1),(1,1),(1,-1)/
      DATA D2 /(-1,0),(0,-1),(-1,1),(0,1),(1,0),(-1,-1),(1,-1),(1,1)/

      DATA INVD1 /(-1,0),(0,-1),(-.5,.5),(0,1),(1,0),
     $     (-.5,-.5),(.5,-.5),(.5,.5)/
      DATA INVD2 /(-1,0),(0,1),(-.5,-.5),(0,-1),(1,0),
     $     (-.5,.5),(.5,.5),(.5,-.5)/
*     ..
*     .. External Functions
      EXTERNAL ZLASET, LSAMEN
      INTRINSIC DBLE
      LOGICAL LSAMEN
*     ..
*     .. Executable Statements ..
      C2 = PATH( 2: 3 )
*
*     Test the input arguments
*
      INFO = 0
      IF (N .LT. 0 .OR. N .GT. NMAX_APPROX) THEN
         INFO = -1
      ELSE IF (NRHS .LT. 0) THEN
         INFO = -2
      ELSE IF (LDA .LT. N) THEN
         INFO = -4
      ELSE IF (LDX .LT. N) THEN
         INFO = -6
      ELSE IF (LDB .LT. N) THEN
         INFO = -8
      END IF
      IF (INFO .LT. 0) THEN
         CALL XERBLA('ZLAHILB', -INFO)
         RETURN
      END IF
      IF (N .GT. NMAX_EXACT) THEN
         INFO = 1
      END IF
*
*     Compute M = the LCM of the integers [1, 2*N-1].  The largest
*     reasonable N is small enough that integers suffice (up to N = 11).
      M = 1
      DO I = 2, (2*N-1)
         TM = M
         TI = I
         R = MOD(TM, TI)
         DO WHILE (R .NE. 0)
            TM = TI
            TI = R
            R = MOD(TM, TI)
         END DO
         M = (M / TI) * I
      END DO
*
*     Generate the scaled Hilbert matrix in A
*     If we are testing SY routines, take D1_i = D2_i, else, D1_i = D2_i*
      IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
         DO J = 1, N
            DO I = 1, N
               A(I, J) = D1(MOD(J,SIZE_D)+1) * (DBLE(M) / (I + J - 1))
     $              * D1(MOD(I,SIZE_D)+1)
            END DO
         END DO
      ELSE
         DO J = 1, N
            DO I = 1, N
               A(I, J) = D1(MOD(J,SIZE_D)+1) * (DBLE(M) / (I + J - 1))
     $              * D2(MOD(I,SIZE_D)+1)
            END DO
         END DO
      END IF
*
*     Generate matrix B as simply the first NRHS columns of M * the
*     identity.
      TMP = DBLE(M)
      CALL ZLASET('Full', N, NRHS, (0.0D+0,0.0D+0), TMP, B, LDB)
*
*     Generate the true solutions in X.  Because B = the first NRHS
*     columns of M*I, the true solutions are just the first NRHS columns
*     of the inverse Hilbert matrix.
      WORK(1) = N
      DO J = 2, N
         WORK(J) = (  ( (WORK(J-1)/(J-1)) * (J-1 - N) ) /(J-1)  )
     $        * (N +J -1)
      END DO
*
*     If we are testing SY routines, take D1_i = D2_i, else, D1_i = D2_i*
      IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
         DO J = 1, NRHS
            DO I = 1, N
               X(I, J) = INVD1(MOD(J,SIZE_D)+1) *
     $              ((WORK(I)*WORK(J)) / (I + J - 1))
     $              * INVD1(MOD(I,SIZE_D)+1)
            END DO
         END DO
      ELSE
         DO J = 1, NRHS
            DO I = 1, N
               X(I, J) = INVD2(MOD(J,SIZE_D)+1) *
     $              ((WORK(I)*WORK(J)) / (I + J - 1))
     $              * INVD1(MOD(I,SIZE_D)+1)
            END DO
         END DO
      END IF
      END