1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
*> \brief \b ZCHKHE_AA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZCHKHE_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
* THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
* XACT, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NN, NNB, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZCHKHE_AA tests ZHETRF_AA, -TRS_AA.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB contained in the vector NBVAL.
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NBVAL)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZCHKHE_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
$ THRESH, TSTERR, NMAX, A, AFAC, AINV, B,
$ X, XACT, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NNB, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
PARAMETER ( NTESTS = 9 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, TYPE, UPLO, XTYPE
CHARACTER*3 PATH, MATPATH
INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
$ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
$ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
DOUBLE PRECISION ANORM, CNDNUM
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZERRHE,
$ ZHET01_AA, ZHETRF_AA, ZHETRS_AA, ZLACPY,
$ ZLAIPD, ZLARHS, ZLATB4, ZLATMS, ZPOT02
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
* Test path
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'HA'
*
* Path to generate matrices
*
MATPATH( 1: 1 ) = 'Zomplex precision'
MATPATH( 2: 3 ) = 'HE'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL ZERRHE( PATH, NOUT )
INFOT = 0
*
* Set the minimum block size for which the block routine should
* be used, which will be later returned by ILAENV
*
CALL XLAENV( 2, 2 )
*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
N = NVAL( IN )
IF( N .GT. NMAX ) THEN
NFAIL = NFAIL + 1
WRITE(NOUT, 9995) 'M ', N, NMAX
GO TO 180
END IF
LDA = MAX( N, 1 )
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
IZERO = 0
DO 170 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 170
*
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 170
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 160 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Set up parameters with ZLATB4 for the matrix generator
* based on the type of matrix to be generated.
*
CALL ZLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU,
$ ANORM, MODE, CNDNUM, DIST )
*
* Generate a matrix with ZLATMS.
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
$ INFO )
*
* Check error code from ZLATMS and handle error.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
* Skip all tests for this generated matrix
*
GO TO 160
END IF
*
* For types 3-6, zero one or more rows and columns of
* the matrix to test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
IF( IMAT.LT.6 ) THEN
*
* Set row and column IZERO to zero.
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDA
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = CZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = CZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = CZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = CZERO
50 CONTINUE
END IF
ELSE
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
A( IOFF+I ) = CZERO
60 CONTINUE
IOFF = IOFF + LDA
70 CONTINUE
IZERO = 1
ELSE
*
* Set the last IZERO rows and columns to zero.
*
IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
A( IOFF+I ) = CZERO
80 CONTINUE
IOFF = IOFF + LDA
90 CONTINUE
END IF
END IF
ELSE
IZERO = 0
END IF
*
* End generate test matrix A.
*
*
* Set the imaginary part of the diagonals.
*
CALL ZLAIPD( N, A, LDA+1, 0 )
*
* Do for each value of NB in NBVAL
*
DO 150 INB = 1, NNB
*
* Set the optimal blocksize, which will be later
* returned by ILAENV.
*
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Copy the test matrix A into matrix AFAC which
* will be factorized in place. This is needed to
* preserve the test matrix A for subsequent tests.
*
CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
*
* Compute the L*D*L**T or U*D*U**T factorization of the
* matrix. IWORK stores details of the interchanges and
* the block structure of D. AINV is a work array for
* block factorization, LWORK is the length of AINV.
*
LWORK = MAX( 1, ( NB+1 )*LDA )
SRNAMT = 'ZHETRF_AA'
CALL ZHETRF_AA( UPLO, N, AFAC, LDA, IWORK, AINV,
$ LWORK, INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
c IF( IZERO.GT.0 ) THEN
c J = 1
c K = IZERO
c 100 CONTINUE
c IF( J.EQ.K ) THEN
c K = IWORK( J )
c ELSE IF( IWORK( J ).EQ.K ) THEN
c K = J
c END IF
c IF( J.LT.K ) THEN
c J = J + 1
c GO TO 100
c END IF
c ELSE
K = 0
c END IF
*
* Check error code from ZHETRF and handle error.
*
IF( INFO.NE.K ) THEN
CALL ALAERH( PATH, 'ZHETRF_AA', INFO, K, UPLO,
$ N, N, -1, -1, NB, IMAT, NFAIL, NERRS,
$ NOUT )
END IF
*
*+ TEST 1
* Reconstruct matrix from factors and compute residual.
*
CALL ZHET01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK,
$ AINV, LDA, RWORK, RESULT( 1 ) )
NT = 1
*
*
* Print information about the tests that did not pass
* the threshold.
*
DO 110 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
110 CONTINUE
NRUN = NRUN + NT
*
* Skip solver test if INFO is not 0.
*
IF( INFO.NE.0 ) THEN
GO TO 140
END IF
*
* Do for each value of NRHS in NSVAL.
*
DO 130 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
*+ TEST 2 (Using TRS)
* Solve and compute residual for A * X = B.
*
* Choose a set of NRHS random solution vectors
* stored in XACT and set up the right hand side B
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( MATPATH, XTYPE, UPLO, ' ', N, N,
$ KL, KU, NRHS, A, LDA, XACT, LDA,
$ B, LDA, ISEED, INFO )
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
SRNAMT = 'ZHETRS_AA'
LWORK = MAX( 1, 3*N-2 )
CALL ZHETRS_AA( UPLO, N, NRHS, AFAC, LDA, IWORK,
$ X, LDA, WORK, LWORK, INFO )
*
* Check error code from ZHETRS and handle error.
*
IF( INFO.NE.0 ) THEN
IF( IZERO.EQ.0 ) THEN
CALL ALAERH( PATH, 'ZHETRS_AA', INFO, 0,
$ UPLO, N, N, -1, -1, NRHS, IMAT,
$ NFAIL, NERRS, NOUT )
END IF
ELSE
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA
$ )
*
* Compute the residual for the solution
*
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
$ WORK, LDA, RWORK, RESULT( 2 ) )
*
* Print information about the tests that did not pass
* the threshold.
*
DO 120 K = 2, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
$ IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
120 CONTINUE
END IF
NRUN = NRUN + 1
*
* End do for each value of NRHS in NSVAL.
*
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
$ I2, ', test ', I2, ', ratio =', G12.5 )
9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') =', G12.5 )
c 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
c $ ', test(', I2, ') =', G12.5 )
9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=',
$ I6 )
RETURN
*
* End of ZCHKHE_AA
*
END
|