summaryrefslogtreecommitdiff
path: root/TESTING/LIN/sqpt01.f
blob: f7f471f45b69d405c5e8454e6047ed38fa0cc803 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
*> \brief \b SQPT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       REAL             FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
*                        WORK, LWORK )
* 
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       INTEGER            JPVT( * )
*       REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
*      $                   WORK( LWORK )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SQPT01 tests the QR-factorization with pivoting of a matrix A.  The
*> array AF contains the (possibly partial) QR-factorization of A, where
*> the upper triangle of AF(1:k,1:k) is a partial triangular factor,
*> the entries below the diagonal in the first k columns are the
*> Householder vectors, and the rest of AF contains a partially updated
*> matrix.
*>
*> This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrices A and AF.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices A and AF.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of columns of AF that have been reduced
*>          to upper triangular form.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (LDA, N)
*>          The original matrix A.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is REAL array, dimension (LDA,N)
*>          The (possibly partial) output of SGEQPF.  The upper triangle
*>          of AF(1:k,1:k) is a partial triangular factor, the entries
*>          below the diagonal in the first k columns are the Householder
*>          vectors, and the rest of AF contains a partially updated
*>          matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A and AF.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (K)
*>          Details of the Householder transformations as returned by
*>          SGEQPF.
*> \endverbatim
*>
*> \param[in] JPVT
*> \verbatim
*>          JPVT is INTEGER array, dimension (N)
*>          Pivot information as returned by SGEQPF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK.  LWORK >= M*N+N.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup single_lin
*
*  =====================================================================
      REAL             FUNCTION SQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
     $                 WORK, LWORK )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      REAL               A( LDA, * ), AF( LDA, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      REAL               NORMA
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 1 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE
      EXTERNAL           SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, SORMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      SQPT01 = ZERO
*
*     Test if there is enough workspace
*
      IF( LWORK.LT.M*N+N ) THEN
         CALL XERBLA( 'SQPT01', 10 )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK )
*
      DO 30 J = 1, K
         DO 10 I = 1, MIN( J, M )
            WORK( ( J-1 )*M+I ) = AF( I, J )
   10    CONTINUE
         DO 20 I = J + 1, M
            WORK( ( J-1 )*M+I ) = ZERO
   20    CONTINUE
   30 CONTINUE
      DO 40 J = K + 1, N
         CALL SCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
   40 CONTINUE
*
      CALL SORMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
     $             M, WORK( M*N+1 ), LWORK-M*N, INFO )
*
      DO 50 J = 1, N
*
*        Compare i-th column of QR and jpvt(i)-th column of A
*
         CALL SAXPY( M, -ONE, A( 1, JPVT( J ) ), 1, WORK( ( J-1 )*M+1 ),
     $               1 )
   50 CONTINUE
*
      SQPT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
     $         ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) )
      IF( NORMA.NE.ZERO )
     $   SQPT01 = SQPT01 / NORMA
*
      RETURN
*
*     End of SQPT01
*
      END