1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
*> \brief \b SPST01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
* PIV, RWORK, RESID, RANK )
*
* .. Scalar Arguments ..
* REAL RESID
* INTEGER LDA, LDAFAC, LDPERM, N, RANK
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AFAC( LDAFAC, * ),
* $ PERM( LDPERM, * ), RWORK( * )
* INTEGER PIV( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPST01 reconstructs a symmetric positive semidefinite matrix A
*> from its L or U factors and the permutation matrix P and computes
*> the residual
*> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
*> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> The factor L or U from the L*L' or U'*U
*> factorization of A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*> PERM is REAL array, dimension (LDPERM,N)
*> Overwritten with the reconstructed matrix, and then with the
*> difference P*L*L'*P' - A (or P*U'*U*P' - A)
*> \endverbatim
*>
*> \param[in] LDPERM
*> \verbatim
*> LDPERM is INTEGER
*> The leading dimension of the array PERM.
*> LDAPERM >= max(1,N).
*> \endverbatim
*>
*> \param[in] PIV
*> \verbatim
*> PIV is INTEGER array, dimension (N)
*> PIV is such that the nonzero entries are
*> P( PIV( K ), K ) = 1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*>
*> \param[in] RANK
*> \verbatim
*> RANK is INTEGER
*> number of nonzero singular values of A.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
$ PIV, RWORK, RESID, RANK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
REAL RESID
INTEGER LDA, LDAFAC, LDPERM, N, RANK
CHARACTER UPLO
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AFAC( LDAFAC, * ),
$ PERM( LDPERM, * ), RWORK( * )
INTEGER PIV( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
REAL ANORM, EPS, T
INTEGER I, J, K
* ..
* .. External Functions ..
REAL SDOT, SLAMCH, SLANSY
LOGICAL LSAME
EXTERNAL SDOT, SLAMCH, SLANSY, LSAME
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSYR, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( RANK.LT.N ) THEN
DO 110 J = RANK + 1, N
DO 100 I = RANK + 1, J
AFAC( I, J ) = ZERO
100 CONTINUE
110 CONTINUE
END IF
*
DO 120 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
AFAC( K, K ) = T
*
* Compute the rest of column K.
*
CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
*
120 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
*
IF( RANK.LT.N ) THEN
DO 140 J = RANK + 1, N
DO 130 I = J, N
AFAC( I, J ) = ZERO
130 CONTINUE
140 CONTINUE
END IF
*
DO 150 K = N, 1, -1
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K+1.LE.N )
$ CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
$ AFAC( K+1, K+1 ), LDAFAC )
*
* Scale column K by the diagonal element.
*
T = AFAC( K, K )
CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 )
150 CONTINUE
*
END IF
*
* Form P*L*L'*P' or P*U'*U*P'
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
DO 170 J = 1, N
DO 160 I = 1, N
IF( PIV( I ).LE.PIV( J ) ) THEN
IF( I.LE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = AFAC( J, I )
END IF
END IF
160 CONTINUE
170 CONTINUE
*
*
ELSE
*
DO 190 J = 1, N
DO 180 I = 1, N
IF( PIV( I ).GE.PIV( J ) ) THEN
IF( I.GE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = AFAC( J, I )
END IF
END IF
180 CONTINUE
190 CONTINUE
*
END IF
*
* Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 210 J = 1, N
DO 200 I = 1, J
PERM( I, J ) = PERM( I, J ) - A( I, J )
200 CONTINUE
210 CONTINUE
ELSE
DO 230 J = 1, N
DO 220 I = J, N
PERM( I, J ) = PERM( I, J ) - A( I, J )
220 CONTINUE
230 CONTINUE
END IF
*
* Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
* ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
*
RESID = SLANSY( '1', UPLO, N, PERM, LDAFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPST01
*
END
|