summaryrefslogtreecommitdiff
path: root/TESTING/LIN/sppt01.f
blob: 0a37c47d6042f73c0442b5ce32669a9772d8bb88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
*> \brief \b SPPT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SPPT01( UPLO, N, A, AFAC, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            N
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       REAL               A( * ), AFAC( * ), RWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SPPT01 reconstructs a symmetric positive definite packed matrix A
*> from its L*L' or U'*U factorization and computes the residual
*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (N*(N+1)/2)
*>          The original symmetric matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[in,out] AFAC
*> \verbatim
*>          AFAC is REAL array, dimension (N*(N+1)/2)
*>          On entry, the factor L or U from the L*L' or U'*U
*>          factorization of A, stored as a packed triangular matrix.
*>          Overwritten with the reconstructed matrix, and then with the
*>          difference L*L' - A (or U'*U - A).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE SPPT01( UPLO, N, A, AFAC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               A( * ), AFAC( * ), RWORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, K, KC, NPP
      REAL               ANORM, EPS, T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT, SLAMCH, SLANSP
      EXTERNAL           LSAME, SDOT, SLAMCH, SLANSP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSCAL, SSPR, STPMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = SLANSP( '1', UPLO, N, A, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         KC = ( N*( N-1 ) ) / 2 + 1
         DO 10 K = N, 1, -1
*
*           Compute the (K,K) element of the result.
*
            T = SDOT( K, AFAC( KC ), 1, AFAC( KC ), 1 )
            AFAC( KC+K-1 ) = T
*
*           Compute the rest of column K.
*
            IF( K.GT.1 ) THEN
               CALL STPMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
     $                     AFAC( KC ), 1 )
               KC = KC - ( K-1 )
            END IF
   10    CONTINUE
*
*     Compute the product L*L', overwriting L.
*
      ELSE
         KC = ( N*( N+1 ) ) / 2
         DO 20 K = N, 1, -1
*
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( K.LT.N )
     $         CALL SSPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
     $                    AFAC( KC+N-K+1 ) )
*
*           Scale column K by the diagonal element.
*
            T = AFAC( KC )
            CALL SSCAL( N-K+1, T, AFAC( KC ), 1 )
*
            KC = KC - ( N-K+2 )
   20    CONTINUE
      END IF
*
*     Compute the difference  L*L' - A (or U'*U - A).
*
      NPP = N*( N+1 ) / 2
      DO 30 I = 1, NPP
         AFAC( I ) = AFAC( I ) - A( I )
   30 CONTINUE
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      RESID = SLANSP( '1', UPLO, N, AFAC, RWORK )
*
      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of SPPT01
*
      END