1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
*> \brief \b DPTT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDB, LDX, N, NRHS
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DPTT02 computes the residual for the solution to a symmetric
*> tridiagonal system of equations:
*> RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGTER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> The n by nrhs matrix of solution vectors X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the n by nrhs matrix of right hand side vectors B.
*> On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(B - A*X) / (norm(A) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J
DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DLANST
EXTERNAL DASUM, DLAMCH, DLANST
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Subroutines ..
EXTERNAL DLAPTM
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Compute the 1-norm of the tridiagonal matrix A.
*
ANORM = DLANST( '1', N, D, E )
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute B - A*X.
*
CALL DLAPTM( N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
*
* Compute the maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
RESID = ZERO
DO 10 J = 1, NRHS
BNORM = DASUM( N, B( 1, J ), 1 )
XNORM = DASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of DPTT02
*
END
|