1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
*> \brief \b CSPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDW, N
* REAL RCOND, RESID
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( * ), AINV( * ), WORK( LDW, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSPT03 computes the residual for a complex symmetric packed matrix
*> times its inverse:
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> complex symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (N*(N+1)/2)
*> The original complex symmetric matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is COMPLEX array, dimension (N*(N+1)/2)
*> The (symmetric) inverse of the matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LDW,N)
*> \endverbatim
*>
*> \param[in] LDW
*> \verbatim
*> LDW is INTEGER
*> The leading dimension of the array WORK. LDW >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDW, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( * ), AINV( * ), WORK( LDW, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, ICOL, J, JCOL, K, KCOL, NALL
REAL AINVNM, ANORM, EPS
COMPLEX T
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGE, CLANSP, SLAMCH
COMPLEX CDOTU
EXTERNAL LSAME, CLANGE, CLANSP, SLAMCH, CDOTU
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANSP( '1', UPLO, N, A, RWORK )
AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE/ANORM ) / AINVNM
*
* Case where both A and AINV are upper triangular:
* Each element of - A * AINV is computed by taking the dot product
* of a row of A with a column of AINV.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 70 I = 1, N
ICOL = ( ( I-1 )*I ) / 2 + 1
*
* Code when J <= I
*
DO 30 J = 1, I
JCOL = ( ( J-1 )*J ) / 2 + 1
T = CDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
JCOL = JCOL + 2*J - 1
KCOL = ICOL - 1
DO 10 K = J + 1, I
T = T + A( KCOL+K )*AINV( JCOL )
JCOL = JCOL + K
10 CONTINUE
KCOL = KCOL + 2*I
DO 20 K = I + 1, N
T = T + A( KCOL )*AINV( JCOL )
KCOL = KCOL + K
JCOL = JCOL + K
20 CONTINUE
WORK( I, J ) = -T
30 CONTINUE
*
* Code when J > I
*
DO 60 J = I + 1, N
JCOL = ( ( J-1 )*J ) / 2 + 1
T = CDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
JCOL = JCOL - 1
KCOL = ICOL + 2*I - 1
DO 40 K = I + 1, J
T = T + A( KCOL )*AINV( JCOL+K )
KCOL = KCOL + K
40 CONTINUE
JCOL = JCOL + 2*J
DO 50 K = J + 1, N
T = T + A( KCOL )*AINV( JCOL )
KCOL = KCOL + K
JCOL = JCOL + K
50 CONTINUE
WORK( I, J ) = -T
60 CONTINUE
70 CONTINUE
ELSE
*
* Case where both A and AINV are lower triangular
*
NALL = ( N*( N+1 ) ) / 2
DO 140 I = 1, N
*
* Code when J <= I
*
ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
DO 100 J = 1, I
JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
T = CDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
KCOL = I
JCOL = J
DO 80 K = 1, J - 1
T = T + A( KCOL )*AINV( JCOL )
JCOL = JCOL + N - K
KCOL = KCOL + N - K
80 CONTINUE
JCOL = JCOL - J
DO 90 K = J, I - 1
T = T + A( KCOL )*AINV( JCOL+K )
KCOL = KCOL + N - K
90 CONTINUE
WORK( I, J ) = -T
100 CONTINUE
*
* Code when J > I
*
ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
DO 130 J = I + 1, N
JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
T = CDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
KCOL = I
JCOL = J
DO 110 K = 1, I - 1
T = T + A( KCOL )*AINV( JCOL )
JCOL = JCOL + N - K
KCOL = KCOL + N - K
110 CONTINUE
KCOL = KCOL - I
DO 120 K = I, J - 1
T = T + A( KCOL+K )*AINV( JCOL )
JCOL = JCOL + N - K
120 CONTINUE
WORK( I, J ) = -T
130 CONTINUE
140 CONTINUE
END IF
*
* Add the identity matrix to WORK .
*
DO 150 I = 1, N
WORK( I, I ) = WORK( I, I ) + ONE
150 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = CLANGE( '1', N, N, WORK, LDW, RWORK )
*
RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
RETURN
*
* End of CSPT03
*
END
|