summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cspt01.f
blob: b40456b9c0f2c7715d0cff278dff80f31127360f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
*> \brief \b CSPT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDC, N
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               RWORK( * )
*       COMPLEX            A( * ), AFAC( * ), C( LDC, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSPT01 reconstructs a symmetric indefinite packed matrix A from its
*> diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes
*> the residual
*>    norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (N*(N+1)/2)
*>          The original symmetric matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX array, dimension (N*(N+1)/2)
*>          The factored form of the matrix A, stored as a packed
*>          triangular matrix.  AFAC contains the block diagonal matrix D
*>          and the multipliers used to obtain the factor L or U from the
*>          L*D*L' or U*D*U' factorization as computed by CSPTRF.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from CSPTRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), AFAC( * ), C( LDC, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANSP, CLANSY, SLAMCH
      EXTERNAL           LSAME, CLANSP, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAVSP, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANSP( '1', UPLO, N, A, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call CLAVSP to form the product D * U' (or D * L' ).
*
      CALL CLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call CLAVSP again to multiply by U ( or L ).
*
      CALL CLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( JC+I )
   10       CONTINUE
            JC = JC + J
   20    CONTINUE
      ELSE
         JC = 1
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   30       CONTINUE
            JC = JC + N - J + 1
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of CSPT01
*
      END