1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
*> \brief \b CQRT15
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
* RANK, NORMA, NORMB, ISEED, WORK, LWORK )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
* REAL NORMA, NORMB
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL S( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CQRT15 generates a matrix with full or deficient rank and of various
*> norms.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SCALE
*> \verbatim
*> SCALE is INTEGER
*> SCALE = 1: normally scaled matrix
*> SCALE = 2: matrix scaled up
*> SCALE = 3: matrix scaled down
*> \endverbatim
*>
*> \param[in] RKSEL
*> \verbatim
*> RKSEL is INTEGER
*> RKSEL = 1: full rank matrix
*> RKSEL = 2: rank-deficient matrix
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, NRHS)
*> A matrix that is in the range space of matrix A.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension MIN(M,N)
*> Singular values of A.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> number of nonzero singular values of A.
*> \endverbatim
*>
*> \param[out] NORMA
*> \verbatim
*> NORMA is REAL
*> one-norm norm of A.
*> \endverbatim
*>
*> \param[out] NORMB
*> \verbatim
*> NORMB is REAL
*> one-norm norm of B.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is integer array, dimension (4)
*> seed for random number generator.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> length of work space required.
*> LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
$ RANK, NORMA, NORMB, ISEED, WORK, LWORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
REAL NORMA, NORMB
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL S( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO, SVMIN
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
$ SVMIN = 0.1E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER INFO, J, MN
REAL BIGNUM, EPS, SMLNUM, TEMP
* ..
* .. Local Arrays ..
REAL DUMMY( 1 )
* ..
* .. External Functions ..
REAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
EXTERNAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
$ CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
CALL XERBLA( 'CQRT15', 16 )
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
EPS = SLAMCH( 'Epsilon' )
SMLNUM = ( SMLNUM / EPS ) / EPS
BIGNUM = ONE / SMLNUM
*
* Determine rank and (unscaled) singular values
*
IF( RKSEL.EQ.1 ) THEN
RANK = MN
ELSE IF( RKSEL.EQ.2 ) THEN
RANK = ( 3*MN ) / 4
DO 10 J = RANK + 1, MN
S( J ) = ZERO
10 CONTINUE
ELSE
CALL XERBLA( 'CQRT15', 2 )
END IF
*
IF( RANK.GT.0 ) THEN
*
* Nontrivial case
*
S( 1 ) = ONE
DO 30 J = 2, RANK
20 CONTINUE
TEMP = SLARND( 1, ISEED )
IF( TEMP.GT.SVMIN ) THEN
S( J ) = ABS( TEMP )
ELSE
GO TO 20
END IF
30 CONTINUE
CALL SLAORD( 'Decreasing', RANK, S, 1 )
*
* Generate 'rank' columns of a random orthogonal matrix in A
*
CALL CLARNV( 2, ISEED, M, WORK )
CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
$ WORK( M+1 ) )
*
* workspace used: m+mn
*
* Generate consistent rhs in the range space of A
*
CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
$ CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
*
* work space used: <= mn *nrhs
*
* generate (unscaled) matrix A
*
DO 40 J = 1, RANK
CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
40 CONTINUE
IF( RANK.LT.N )
$ CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
$ A( 1, RANK+1 ), LDA )
CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
$ WORK, INFO )
*
ELSE
*
* work space used 2*n+m
*
* Generate null matrix and rhs
*
DO 50 J = 1, MN
S( J ) = ZERO
50 CONTINUE
CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
*
END IF
*
* Scale the matrix
*
IF( SCALE.NE.1 ) THEN
NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
IF( NORMA.NE.ZERO ) THEN
IF( SCALE.EQ.2 ) THEN
*
* matrix scaled up
*
CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
$ LDA, INFO )
CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
$ MN, INFO )
CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
$ LDB, INFO )
ELSE IF( SCALE.EQ.3 ) THEN
*
* matrix scaled down
*
CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
$ LDA, INFO )
CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
$ MN, INFO )
CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
$ LDB, INFO )
ELSE
CALL XERBLA( 'CQRT15', 1 )
RETURN
END IF
END IF
END IF
*
NORMA = SASUM( MN, S, 1 )
NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
*
RETURN
*
* End of CQRT15
*
END
|