summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cqrt12.f
blob: 181c27f0c0e330a976105a8737bb20f7953127a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
*> \brief \b CQRT12
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       REAL             FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
*                        RWORK )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * ), S( * )
*       COMPLEX            A( LDA, * ), WORK( LWORK )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CQRT12 computes the singular values `svlues' of the upper trapezoid
*> of A(1:M,1:N) and returns the ratio
*>
*>      || s - svlues||/(||svlues||*eps*max(M,N))
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The M-by-N matrix A. Only the upper trapezoid is referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*>          S is REAL array, dimension (min(M,N))
*>          The singular values of the matrix A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
*>          max(M,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (4*min(M,N))
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      REAL             FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
     $                 RWORK )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * ), S( * )
      COMPLEX            A( LDA, * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, ISCL, J, MN
      REAL               ANRM, BIGNUM, NRMSVL, SMLNUM
*     ..
*     .. Local Arrays ..
      REAL               DUMMY( 1 )
*     ..
*     .. External Functions ..
      REAL               CLANGE, SASUM, SLAMCH, SNRM2
      EXTERNAL           CLANGE, SASUM, SLAMCH, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLABAD,
     $                   SLASCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      CQRT12 = ZERO
*
*     Test that enough workspace is supplied
*
      IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
         CALL XERBLA( 'CQRT12', 7 )
         RETURN
      END IF
*
*     Quick return if possible
*
      MN = MIN( M, N )
      IF( MN.LE.ZERO )
     $   RETURN
*
      NRMSVL = SNRM2( MN, S, 1 )
*
*     Copy upper triangle of A into work
*
      CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M )
      DO 20 J = 1, N
         DO 10 I = 1, MIN( J, M )
            WORK( ( J-1 )*M+I ) = A( I, J )
   10    CONTINUE
   20 CONTINUE
*
*     Get machine parameters
*
      SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
*
*     Scale work if max entry outside range [SMLNUM,BIGNUM]
*
      ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY )
      ISCL = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
*        Scale matrix norm up to SMLNUM
*
         CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
         ISCL = 1
      ELSE IF( ANRM.GT.BIGNUM ) THEN
*
*        Scale matrix norm down to BIGNUM
*
         CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
         ISCL = 1
      END IF
*
      IF( ANRM.NE.ZERO ) THEN
*
*        Compute SVD of work
*
         CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
     $                WORK( M*N+1 ), WORK( M*N+MN+1 ),
     $                WORK( M*N+2*MN+1 ), INFO )
         CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
     $                DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ),
     $                INFO )
*
         IF( ISCL.EQ.1 ) THEN
            IF( ANRM.GT.BIGNUM ) THEN
               CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
     $                      MN, INFO )
            END IF
            IF( ANRM.LT.SMLNUM ) THEN
               CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
     $                      MN, INFO )
            END IF
         END IF
*
      ELSE
*
         DO 30 I = 1, MN
            RWORK( I ) = ZERO
   30    CONTINUE
      END IF
*
*     Compare s and singular values of work
*
      CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
      CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) /
     $         ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
      IF( NRMSVL.NE.ZERO )
     $   CQRT12 = CQRT12 / NRMSVL
*
      RETURN
*
*     End of CQRT12
*
      END