summaryrefslogtreecommitdiff
path: root/TESTING/LIN/cppt03.f
blob: c8def708eb00d451e1fcbb8415ff0d2f7c5d9faa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
*> \brief \b CPPT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
*                          RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDWORK, N
*       REAL               RCOND, RESID
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            A( * ), AINV( * ), WORK( LDWORK, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CPPT03 computes the residual for a Hermitian packed matrix times its
*> inverse:
*>    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (N*(N+1)/2)
*>          The original Hermitian matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*>          AINV is COMPLEX array, dimension (N*(N+1)/2)
*>          The (Hermitian) inverse of the matrix A, stored as a packed
*>          triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The reciprocal of the condition number of A, computed as
*>          ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDWORK, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( * ), AINV( * ), WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, JJ
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, CLANHP, SLAMCH
      EXTERNAL           LSAME, CLANGE, CLANHP, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, REAL
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CHPMV
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
      AINVNM = CLANHP( '1', UPLO, N, AINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE/ANORM ) / AINVNM
*
*     UPLO = 'U':
*     Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
*     expand it to a full matrix, then multiply by A one column at a
*     time, moving the result one column to the left.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Copy AINV
*
         JJ = 1
         DO 20 J = 1, N - 1
            CALL CCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
            DO 10 I = 1, J - 1
               WORK( J, I+1 ) = CONJG( AINV( JJ+I-1 ) )
   10       CONTINUE
            JJ = JJ + J
   20    CONTINUE
         JJ = ( ( N-1 )*N ) / 2 + 1
         DO 30 I = 1, N - 1
            WORK( N, I+1 ) = CONJG( AINV( JJ+I-1 ) )
   30    CONTINUE
*
*        Multiply by A
*
         DO 40 J = 1, N - 1
            CALL CHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
     $                  WORK( 1, J ), 1 )
   40    CONTINUE
         CALL CHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
     $               WORK( 1, N ), 1 )
*
*     UPLO = 'L':
*     Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
*     and multiply by A, moving each column to the right.
*
      ELSE
*
*        Copy AINV
*
         DO 50 I = 1, N - 1
            WORK( 1, I ) = CONJG( AINV( I+1 ) )
   50    CONTINUE
         JJ = N + 1
         DO 70 J = 2, N
            CALL CCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
            DO 60 I = 1, N - J
               WORK( J, J+I-1 ) = CONJG( AINV( JJ+I ) )
   60       CONTINUE
            JJ = JJ + N - J + 1
   70    CONTINUE
*
*        Multiply by A
*
         DO 80 J = N, 2, -1
            CALL CHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
     $                  WORK( 1, J ), 1 )
   80    CONTINUE
         CALL CHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
     $               WORK( 1, 1 ), 1 )
*
      END IF
*
*     Add the identity matrix to WORK .
*
      DO 90 I = 1, N
         WORK( I, I ) = WORK( I, I ) + CONE
   90 CONTINUE
*
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
      RETURN
*
*     End of CPPT03
*
      END