1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
*> \brief \b ZGET35
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGET35( RMAX, LMAX, NINFO, KNT, NIN )
*
* .. Scalar Arguments ..
* INTEGER KNT, LMAX, NIN, NINFO
* DOUBLE PRECISION RMAX
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGET35 tests ZTRSYL, a routine for solving the Sylvester matrix
*> equation
*>
*> op(A)*X + ISGN*X*op(B) = scale*C,
*>
*> A and B are assumed to be in Schur canonical form, op() represents an
*> optional transpose, and ISGN can be -1 or +1. Scale is an output
*> less than or equal to 1, chosen to avoid overflow in X.
*>
*> The test code verifies that the following residual is order 1:
*>
*> norm(op(A)*X + ISGN*X*op(B) - scale*C) /
*> (EPS*max(norm(A),norm(B))*norm(X))
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[out] RMAX
*> \verbatim
*> RMAX is DOUBLE PRECISION
*> Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*> LMAX is INTEGER
*> Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*> NINFO is INTEGER
*> Number of examples where INFO is nonzero.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*> KNT is INTEGER
*> Total number of examples tested.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> Input logical unit number.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGET35( RMAX, LMAX, NINFO, KNT, NIN )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KNT, LMAX, NIN, NINFO
DOUBLE PRECISION RMAX
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER LDT
PARAMETER ( LDT = 10 )
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
DOUBLE PRECISION LARGE
PARAMETER ( LARGE = 1.0D6 )
COMPLEX*16 CONE
PARAMETER ( CONE = 1.0D0 )
* ..
* .. Local Scalars ..
CHARACTER TRANA, TRANB
INTEGER I, IMLA, IMLAD, IMLB, IMLC, INFO, ISGN, ITRANA,
$ ITRANB, J, M, N
DOUBLE PRECISION BIGNUM, EPS, RES, RES1, SCALE, SMLNUM, TNRM,
$ XNRM
COMPLEX*16 RMUL
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 ), VM1( 3 ), VM2( 3 )
COMPLEX*16 A( LDT, LDT ), ATMP( LDT, LDT ), B( LDT, LDT ),
$ BTMP( LDT, LDT ), C( LDT, LDT ),
$ CSAV( LDT, LDT ), CTMP( LDT, LDT )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZGEMM, ZTRSYL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Get machine parameters
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Set up test case parameters
*
VM1( 1 ) = SQRT( SMLNUM )
VM1( 2 ) = ONE
VM1( 3 ) = LARGE
VM2( 1 ) = ONE
VM2( 2 ) = ONE + TWO*EPS
VM2( 3 ) = TWO
*
KNT = 0
NINFO = 0
LMAX = 0
RMAX = ZERO
*
* Begin test loop
*
10 CONTINUE
READ( NIN, FMT = * )M, N
IF( N.EQ.0 )
$ RETURN
DO 20 I = 1, M
READ( NIN, FMT = * )( ATMP( I, J ), J = 1, M )
20 CONTINUE
DO 30 I = 1, N
READ( NIN, FMT = * )( BTMP( I, J ), J = 1, N )
30 CONTINUE
DO 40 I = 1, M
READ( NIN, FMT = * )( CTMP( I, J ), J = 1, N )
40 CONTINUE
DO 170 IMLA = 1, 3
DO 160 IMLAD = 1, 3
DO 150 IMLB = 1, 3
DO 140 IMLC = 1, 3
DO 130 ITRANA = 1, 2
DO 120 ITRANB = 1, 2
DO 110 ISGN = -1, 1, 2
IF( ITRANA.EQ.1 )
$ TRANA = 'N'
IF( ITRANA.EQ.2 )
$ TRANA = 'C'
IF( ITRANB.EQ.1 )
$ TRANB = 'N'
IF( ITRANB.EQ.2 )
$ TRANB = 'C'
TNRM = ZERO
DO 60 I = 1, M
DO 50 J = 1, M
A( I, J ) = ATMP( I, J )*VM1( IMLA )
TNRM = MAX( TNRM, ABS( A( I, J ) ) )
50 CONTINUE
A( I, I ) = A( I, I )*VM2( IMLAD )
TNRM = MAX( TNRM, ABS( A( I, I ) ) )
60 CONTINUE
DO 80 I = 1, N
DO 70 J = 1, N
B( I, J ) = BTMP( I, J )*VM1( IMLB )
TNRM = MAX( TNRM, ABS( B( I, J ) ) )
70 CONTINUE
80 CONTINUE
IF( TNRM.EQ.ZERO )
$ TNRM = ONE
DO 100 I = 1, M
DO 90 J = 1, N
C( I, J ) = CTMP( I, J )*VM1( IMLC )
CSAV( I, J ) = C( I, J )
90 CONTINUE
100 CONTINUE
KNT = KNT + 1
CALL ZTRSYL( TRANA, TRANB, ISGN, M, N, A,
$ LDT, B, LDT, C, LDT, SCALE,
$ INFO )
IF( INFO.NE.0 )
$ NINFO = NINFO + 1
XNRM = ZLANGE( 'M', M, N, C, LDT, DUM )
RMUL = CONE
IF( XNRM.GT.ONE .AND. TNRM.GT.ONE ) THEN
IF( XNRM.GT.BIGNUM / TNRM ) THEN
RMUL = MAX( XNRM, TNRM )
RMUL = CONE / RMUL
END IF
END IF
CALL ZGEMM( TRANA, 'N', M, N, M, RMUL, A,
$ LDT, C, LDT, -SCALE*RMUL, CSAV,
$ LDT )
CALL ZGEMM( 'N', TRANB, M, N, N,
$ DBLE( ISGN )*RMUL, C, LDT, B,
$ LDT, CONE, CSAV, LDT )
RES1 = ZLANGE( 'M', M, N, CSAV, LDT, DUM )
RES = RES1 / MAX( SMLNUM, SMLNUM*XNRM,
$ ( ( ABS( RMUL )*TNRM )*EPS )*XNRM )
IF( RES.GT.RMAX ) THEN
LMAX = KNT
RMAX = RES
END IF
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
GO TO 10
*
* End of ZGET35
*
END
|