1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
|
*> \brief \b ZDRVSG
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
* BP, WORK, NWORK, RWORK, LRWORK, IWORK, LIWORK,
* RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
* $ NSIZES, NTYPES, NWORK
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
* DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * )
* COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
* $ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
* $ Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVSG checks the complex Hermitian generalized eigenproblem
*> drivers.
*>
*> ZHEGV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem.
*>
*> ZHEGVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem using a divide and conquer algorithm.
*>
*> ZHEGVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem.
*>
*> ZHPGV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem in packed storage.
*>
*> ZHPGVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem in packed storage using a divide and
*> conquer algorithm.
*>
*> ZHPGVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite generalized
*> eigenproblem in packed storage.
*>
*> ZHBGV computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite banded
*> generalized eigenproblem.
*>
*> ZHBGVD computes all eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite banded
*> generalized eigenproblem using a divide and conquer
*> algorithm.
*>
*> ZHBGVX computes selected eigenvalues and, optionally,
*> eigenvectors of a complex Hermitian-definite banded
*> generalized eigenproblem.
*>
*> When ZDRVSG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, one matrix A of the given type will be
*> generated; a random well-conditioned matrix B is also generated
*> and the pair (A,B) is used to test the drivers.
*>
*> For each pair (A,B), the following tests are performed:
*>
*> (1) ZHEGV with ITYPE = 1 and UPLO ='U':
*>
*> | A Z - B Z D | / ( |A| |Z| n ulp )
*>
*> (2) as (1) but calling ZHPGV
*> (3) as (1) but calling ZHBGV
*> (4) as (1) but with UPLO = 'L'
*> (5) as (4) but calling ZHPGV
*> (6) as (4) but calling ZHBGV
*>
*> (7) ZHEGV with ITYPE = 2 and UPLO ='U':
*>
*> | A B Z - Z D | / ( |A| |Z| n ulp )
*>
*> (8) as (7) but calling ZHPGV
*> (9) as (7) but with UPLO = 'L'
*> (10) as (9) but calling ZHPGV
*>
*> (11) ZHEGV with ITYPE = 3 and UPLO ='U':
*>
*> | B A Z - Z D | / ( |A| |Z| n ulp )
*>
*> (12) as (11) but calling ZHPGV
*> (13) as (11) but with UPLO = 'L'
*> (14) as (13) but calling ZHPGV
*>
*> ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests.
*>
*> ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with
*> the parameter RANGE = 'A', 'N' and 'I', respectively.
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> This type is used for the matrix A which has half-bandwidth KA.
*> B is generated as a well-conditioned positive definite matrix
*> with half-bandwidth KB (<= KA).
*> Currently, the list of possible types for A is:
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced entries
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced entries
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*> and random signs.
*>
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U* D U, where U is unitary and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U* D U, where U is unitary and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U* D U, where U is unitary and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Hermitian matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*>
*> (16) Same as (8), but with KA = 1 and KB = 1
*> (17) Same as (8), but with KA = 2 and KB = 1
*> (18) Same as (8), but with KA = 2 and KB = 2
*> (19) Same as (8), but with KA = 3 and KB = 1
*> (20) Same as (8), but with KA = 3 and KB = 2
*> (21) Same as (8), but with KA = 3 and KB = 3
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> NSIZES INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> ZDRVSG does nothing. It must be at least zero.
*> Not modified.
*>
*> NN INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> Not modified.
*>
*> NTYPES INTEGER
*> The number of elements in DOTYPE. If it is zero, ZDRVSG
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> Not modified.
*>
*> DOTYPE LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> Not modified.
*>
*> ISEED INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to ZDRVSG to continue the same random number
*> sequence.
*> Modified.
*>
*> THRESH DOUBLE PRECISION
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> Not modified.
*>
*> NOUNIT INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> Not modified.
*>
*> A COMPLEX*16 array, dimension (LDA , max(NN))
*> Used to hold the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually
*> used.
*> Modified.
*>
*> LDA INTEGER
*> The leading dimension of A. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> B COMPLEX*16 array, dimension (LDB , max(NN))
*> Used to hold the Hermitian positive definite matrix for
*> the generailzed problem.
*> On exit, B contains the last matrix actually
*> used.
*> Modified.
*>
*> LDB INTEGER
*> The leading dimension of B. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> D DOUBLE PRECISION array, dimension (max(NN))
*> The eigenvalues of A. On exit, the eigenvalues in D
*> correspond with the matrix in A.
*> Modified.
*>
*> Z COMPLEX*16 array, dimension (LDZ, max(NN))
*> The matrix of eigenvectors.
*> Modified.
*>
*> LDZ INTEGER
*> The leading dimension of ZZ. It must be at least 1 and
*> at least max( NN ).
*> Not modified.
*>
*> AB COMPLEX*16 array, dimension (LDA, max(NN))
*> Workspace.
*> Modified.
*>
*> BB COMPLEX*16 array, dimension (LDB, max(NN))
*> Workspace.
*> Modified.
*>
*> AP COMPLEX*16 array, dimension (max(NN)**2)
*> Workspace.
*> Modified.
*>
*> BP COMPLEX*16 array, dimension (max(NN)**2)
*> Workspace.
*> Modified.
*>
*> WORK COMPLEX*16 array, dimension (NWORK)
*> Workspace.
*> Modified.
*>
*> NWORK INTEGER
*> The number of entries in WORK. This must be at least
*> 2*N + N**2 where N = max( NN(j), 2 ).
*> Not modified.
*>
*> RWORK DOUBLE PRECISION array, dimension (LRWORK)
*> Workspace.
*> Modified.
*>
*> LRWORK INTEGER
*> The number of entries in RWORK. This must be at least
*> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where
*> N = max( NN(j) ) and lg( N ) = smallest integer k such
*> that 2**k >= N .
*> Not modified.
*>
*> IWORK INTEGER array, dimension (LIWORK))
*> Workspace.
*> Modified.
*>
*> LIWORK INTEGER
*> The number of entries in IWORK. This must be at least
*> 2 + 5*max( NN(j) ).
*> Not modified.
*>
*> RESULT DOUBLE PRECISION array, dimension (70)
*> The values computed by the 70 tests described above.
*> Modified.
*>
*> INFO INTEGER
*> If 0, then everything ran OK.
*> -1: NSIZES < 0
*> -2: Some NN(j) < 0
*> -3: NTYPES < 0
*> -5: THRESH < 0
*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*> -16: LDZ < 1 or LDZ < NMAX.
*> -21: NWORK too small.
*> -23: LRWORK too small.
*> -25: LIWORK too small.
*> If ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD,
*> ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code,
*> the absolute value of it is returned.
*> Modified.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests that have been run
*> on this matrix.
*> NTESTT The total number of tests for this call.
*> NMAX Largest value in NN.
*> NMATS The number of matrices generated so far.
*> NERRS The number of tests which have exceeded THRESH
*> so far (computed by DLAFTS).
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> ULP, ULPINV Finest relative precision and its inverse.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
$ BP, WORK, NWORK, RWORK, LRWORK, IWORK, LIWORK,
$ RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
$ NSIZES, NTYPES, NWORK
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * )
COMPLEX*16 A( LDA, * ), AB( LDA, * ), AP( * ),
$ B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 21 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
CHARACTER UPLO
INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
$ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
$ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
$ NTESTT
DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
$ RTUNFL, ULP, ULPINV, UNFL, VL, VU
* ..
* .. Local Arrays ..
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
$ KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLARND
EXTERNAL LSAME, DLAMCH, DLARND
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZHBGV, ZHBGVD,
$ ZHBGVX, ZHEGV, ZHEGVD, ZHEGVX, ZHPGV, ZHPGVD,
$ ZHPGVX, ZLACPY, ZLASET, ZLATMR, ZLATMS, ZSGT01
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
$ 2, 3, 6*1 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 6*4 /
* ..
* .. Executable Statements ..
*
* 1) Check for errors
*
NTESTT = 0
INFO = 0
*
BADNN = .FALSE.
NMAX = 0
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
INFO = -16
ELSE IF( 2*MAX( NMAX, 2 )**2.GT.NWORK ) THEN
INFO = -21
ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LRWORK ) THEN
INFO = -23
ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LIWORK ) THEN
INFO = -25
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZDRVSG', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
* More Important constants
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
ULPINV = ONE / ULP
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
*
DO 20 I = 1, 4
ISEED2( I ) = ISEED( I )
20 CONTINUE
*
* Loop over sizes, types
*
NERRS = 0
NMATS = 0
*
DO 650 JSIZE = 1, NSIZES
N = NN( JSIZE )
ANINV = ONE / DBLE( MAX( 1, N ) )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
KA9 = 0
KB9 = 0
DO 640 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 640
NMATS = NMATS + 1
NTEST = 0
*
DO 30 J = 1, 4
IOLDSD( J ) = ISEED( J )
30 CONTINUE
*
* 2) Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, w/ eigenvalues
* =5 random log hermitian, w/ eigenvalues
* =6 random (none)
* =7 random diagonal
* =8 random hermitian
* =9 banded, w/ eigenvalues
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 90
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 70
*
70 CONTINUE
*
IINFO = 0
COND = ULPINV
*
* Special Matrices -- Identity & Jordan block
*
IF( ITYPE.EQ.1 ) THEN
*
* Zero
*
KA = 0
KB = 0
CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
KA = 0
KB = 0
CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
DO 80 JCOL = 1, N
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
KA = 0
KB = 0
CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Hermitian, eigenvalues specified
*
KA = MAX( 0, N-1 )
KB = KA
CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random eigenvalues
*
KA = 0
KB = 0
CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Hermitian, random eigenvalues
*
KA = MAX( 0, N-1 )
KB = KA
CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Hermitian banded, eigenvalues specified
*
* The following values are used for the half-bandwidths:
*
* ka = 1 kb = 1
* ka = 2 kb = 1
* ka = 2 kb = 2
* ka = 3 kb = 1
* ka = 3 kb = 2
* ka = 3 kb = 3
*
KB9 = KB9 + 1
IF( KB9.GT.KA9 ) THEN
KA9 = KA9 + 1
KB9 = 1
END IF
KA = MAX( 0, MIN( N-1, KA9 ) )
KB = MAX( 0, MIN( N-1, KB9 ) )
CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
$ ANORM, KA, KA, 'N', A, LDA, WORK, IINFO )
*
ELSE
*
IINFO = 1
END IF
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
90 CONTINUE
*
ABSTOL = UNFL + UNFL
IF( N.LE.1 ) THEN
IL = 1
IU = N
ELSE
IL = 1 + ( N-1 )*DLARND( 1, ISEED2 )
IU = 1 + ( N-1 )*DLARND( 1, ISEED2 )
IF( IL.GT.IU ) THEN
ITEMP = IL
IL = IU
IU = ITEMP
END IF
END IF
*
* 3) Call ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, CHBGVD,
* ZHEGVX, ZHPGVX and ZHBGVX, do tests.
*
* loop over the three generalized problems
* IBTYPE = 1: A*x = (lambda)*B*x
* IBTYPE = 2: A*B*x = (lambda)*x
* IBTYPE = 3: B*A*x = (lambda)*x
*
DO 630 IBTYPE = 1, 3
*
* loop over the setting UPLO
*
DO 620 IBUPLO = 1, 2
IF( IBUPLO.EQ.1 )
$ UPLO = 'U'
IF( IBUPLO.EQ.2 )
$ UPLO = 'L'
*
* Generate random well-conditioned positive definite
* matrix B, of bandwidth not greater than that of A.
*
CALL ZLATMS( N, N, 'U', ISEED, 'P', RWORK, 5, TEN,
$ ONE, KB, KB, UPLO, B, LDB, WORK( N+1 ),
$ IINFO )
*
* Test ZHEGV
*
NTEST = NTEST + 1
*
CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
*
CALL ZHEGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
$ WORK, NWORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHEGV(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 100
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* Test ZHEGVD
*
NTEST = NTEST + 1
*
CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
*
CALL ZHEGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
$ WORK, NWORK, RWORK, LRWORK, IWORK,
$ LIWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHEGVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 100
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* Test ZHEGVX
*
NTEST = NTEST + 1
*
CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
*
CALL ZHEGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
$ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
$ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
$ IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,A' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 100
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
*
* since we do not know the exact eigenvalues of this
* eigenpair, we just set VL and VU as constants.
* It is quite possible that there are no eigenvalues
* in this interval.
*
VL = ZERO
VU = ANORM
CALL ZHEGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
$ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
$ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
$ IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,V,' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 100
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
*
CALL ZHEGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
$ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
$ LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
$ IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,I,' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 100
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
100 CONTINUE
*
* Test ZHPGV
*
NTEST = NTEST + 1
*
* Copy the matrices into packed storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IJ = 1
DO 120 J = 1, N
DO 110 I = 1, J
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
110 CONTINUE
120 CONTINUE
ELSE
IJ = 1
DO 140 J = 1, N
DO 130 I = J, N
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
130 CONTINUE
140 CONTINUE
END IF
*
CALL ZHPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
$ WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHPGV(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 310
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* Test ZHPGVD
*
NTEST = NTEST + 1
*
* Copy the matrices into packed storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IJ = 1
DO 160 J = 1, N
DO 150 I = 1, J
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
150 CONTINUE
160 CONTINUE
ELSE
IJ = 1
DO 180 J = 1, N
DO 170 I = J, N
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
170 CONTINUE
180 CONTINUE
END IF
*
CALL ZHPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
$ WORK, NWORK, RWORK, LRWORK, IWORK,
$ LIWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHPGVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 310
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* Test ZHPGVX
*
NTEST = NTEST + 1
*
* Copy the matrices into packed storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IJ = 1
DO 200 J = 1, N
DO 190 I = 1, J
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
190 CONTINUE
200 CONTINUE
ELSE
IJ = 1
DO 220 J = 1, N
DO 210 I = J, N
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
210 CONTINUE
220 CONTINUE
END IF
*
CALL ZHPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
$ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
$ RWORK, IWORK( N+1 ), IWORK, INFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,A' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 310
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
* Copy the matrices into packed storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IJ = 1
DO 240 J = 1, N
DO 230 I = 1, J
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
230 CONTINUE
240 CONTINUE
ELSE
IJ = 1
DO 260 J = 1, N
DO 250 I = J, N
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
250 CONTINUE
260 CONTINUE
END IF
*
VL = ZERO
VU = ANORM
CALL ZHPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
$ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
$ RWORK, IWORK( N+1 ), IWORK, INFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,V' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 310
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
* Copy the matrices into packed storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IJ = 1
DO 280 J = 1, N
DO 270 I = 1, J
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
270 CONTINUE
280 CONTINUE
ELSE
IJ = 1
DO 300 J = 1, N
DO 290 I = J, N
AP( IJ ) = A( I, J )
BP( IJ ) = B( I, J )
IJ = IJ + 1
290 CONTINUE
300 CONTINUE
END IF
*
CALL ZHPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
$ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
$ RWORK, IWORK( N+1 ), IWORK, INFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,I' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 310
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
310 CONTINUE
*
IF( IBTYPE.EQ.1 ) THEN
*
* TEST ZHBGV
*
NTEST = NTEST + 1
*
* Copy the matrices into band storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 340 J = 1, N
DO 320 I = MAX( 1, J-KA ), J
AB( KA+1+I-J, J ) = A( I, J )
320 CONTINUE
DO 330 I = MAX( 1, J-KB ), J
BB( KB+1+I-J, J ) = B( I, J )
330 CONTINUE
340 CONTINUE
ELSE
DO 370 J = 1, N
DO 350 I = J, MIN( N, J+KA )
AB( 1+I-J, J ) = A( I, J )
350 CONTINUE
DO 360 I = J, MIN( N, J+KB )
BB( 1+I-J, J ) = B( I, J )
360 CONTINUE
370 CONTINUE
END IF
*
CALL ZHBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
$ D, Z, LDZ, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHBGV(V,' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 620
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* TEST ZHBGVD
*
NTEST = NTEST + 1
*
* Copy the matrices into band storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 400 J = 1, N
DO 380 I = MAX( 1, J-KA ), J
AB( KA+1+I-J, J ) = A( I, J )
380 CONTINUE
DO 390 I = MAX( 1, J-KB ), J
BB( KB+1+I-J, J ) = B( I, J )
390 CONTINUE
400 CONTINUE
ELSE
DO 430 J = 1, N
DO 410 I = J, MIN( N, J+KA )
AB( 1+I-J, J ) = A( I, J )
410 CONTINUE
DO 420 I = J, MIN( N, J+KB )
BB( 1+I-J, J ) = B( I, J )
420 CONTINUE
430 CONTINUE
END IF
*
CALL ZHBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
$ LDB, D, Z, LDZ, WORK, NWORK, RWORK,
$ LRWORK, IWORK, LIWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHBGVD(V,' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 620
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
* Test ZHBGVX
*
NTEST = NTEST + 1
*
* Copy the matrices into band storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 460 J = 1, N
DO 440 I = MAX( 1, J-KA ), J
AB( KA+1+I-J, J ) = A( I, J )
440 CONTINUE
DO 450 I = MAX( 1, J-KB ), J
BB( KB+1+I-J, J ) = B( I, J )
450 CONTINUE
460 CONTINUE
ELSE
DO 490 J = 1, N
DO 470 I = J, MIN( N, J+KA )
AB( 1+I-J, J ) = A( I, J )
470 CONTINUE
DO 480 I = J, MIN( N, J+KB )
BB( 1+I-J, J ) = B( I, J )
480 CONTINUE
490 CONTINUE
END IF
*
CALL ZHBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
$ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
$ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
$ IWORK( N+1 ), IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,A' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 620
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
* Copy the matrices into band storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 520 J = 1, N
DO 500 I = MAX( 1, J-KA ), J
AB( KA+1+I-J, J ) = A( I, J )
500 CONTINUE
DO 510 I = MAX( 1, J-KB ), J
BB( KB+1+I-J, J ) = B( I, J )
510 CONTINUE
520 CONTINUE
ELSE
DO 550 J = 1, N
DO 530 I = J, MIN( N, J+KA )
AB( 1+I-J, J ) = A( I, J )
530 CONTINUE
DO 540 I = J, MIN( N, J+KB )
BB( 1+I-J, J ) = B( I, J )
540 CONTINUE
550 CONTINUE
END IF
*
VL = ZERO
VU = ANORM
CALL ZHBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
$ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
$ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
$ IWORK( N+1 ), IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,V' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 620
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
NTEST = NTEST + 1
*
* Copy the matrices into band storage.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 580 J = 1, N
DO 560 I = MAX( 1, J-KA ), J
AB( KA+1+I-J, J ) = A( I, J )
560 CONTINUE
DO 570 I = MAX( 1, J-KB ), J
BB( KB+1+I-J, J ) = B( I, J )
570 CONTINUE
580 CONTINUE
ELSE
DO 610 J = 1, N
DO 590 I = J, MIN( N, J+KA )
AB( 1+I-J, J ) = A( I, J )
590 CONTINUE
DO 600 I = J, MIN( N, J+KB )
BB( 1+I-J, J ) = B( I, J )
600 CONTINUE
610 CONTINUE
END IF
*
CALL ZHBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
$ BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
$ IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
$ IWORK( N+1 ), IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,I' //
$ UPLO // ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 620
END IF
END IF
*
* Do Test
*
CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
$ LDZ, D, WORK, RWORK, RESULT( NTEST ) )
*
END IF
*
620 CONTINUE
630 CONTINUE
*
* End of Loop -- Check for RESULT(j) > THRESH
*
NTESTT = NTESTT + NTEST
CALL DLAFTS( 'ZSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
$ THRESH, NOUNIT, NERRS )
640 CONTINUE
650 CONTINUE
*
* Summary
*
CALL DLASUM( 'ZSG', NOUNIT, NERRS, NTESTT )
*
RETURN
*
9999 FORMAT( ' ZDRVSG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
* End of ZDRVSG
*
END
|