1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
*> \brief \b ILAENV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3,
* N4 )
*
* .. Scalar Arguments ..
* CHARACTER*( * ) NAME, OPTS
* INTEGER ISPEC, N1, N2, N3, N4
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ILAENV returns problem-dependent parameters for the local
*> environment. See ISPEC for a description of the parameters.
*>
*> In this version, the problem-dependent parameters are contained in
*> the integer array IPARMS in the common block CLAENV and the value
*> with index ISPEC is copied to ILAENV. This version of ILAENV is
*> to be used in conjunction with XLAENV in TESTING and TIMING.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ISPEC
*> \verbatim
*> ISPEC is INTEGER
*> Specifies the parameter to be returned as the value of
*> ILAENV.
*> = 1: the optimal blocksize; if this value is 1, an unblocked
*> algorithm will give the best performance.
*> = 2: the minimum block size for which the block routine
*> should be used; if the usable block size is less than
*> this value, an unblocked routine should be used.
*> = 3: the crossover point (in a block routine, for N less
*> than this value, an unblocked routine should be used)
*> = 4: the number of shifts, used in the nonsymmetric
*> eigenvalue routines
*> = 5: the minimum column dimension for blocking to be used;
*> rectangular blocks must have dimension at least k by m,
*> where k is given by ILAENV(2,...) and m by ILAENV(5,...)
*> = 6: the crossover point for the SVD (when reducing an m by n
*> matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
*> this value, a QR factorization is used first to reduce
*> the matrix to a triangular form.)
*> = 7: the number of processors
*> = 8: the crossover point for the multishift QR and QZ methods
*> for nonsymmetric eigenvalue problems.
*> = 9: maximum size of the subproblems at the bottom of the
*> computation tree in the divide-and-conquer algorithm
*> =10: ieee NaN arithmetic can be trusted not to trap
*> =11: infinity arithmetic can be trusted not to trap
*> 12 <= ISPEC <= 16:
*> xHSEQR or one of its subroutines,
*> see IPARMQ for detailed explanation
*>
*> Other specifications (up to 100) can be added later.
*> \endverbatim
*>
*> \param[in] NAME
*> \verbatim
*> NAME is CHARACTER*(*)
*> The name of the calling subroutine.
*> \endverbatim
*>
*> \param[in] OPTS
*> \verbatim
*> OPTS is CHARACTER*(*)
*> The character options to the subroutine NAME, concatenated
*> into a single character string. For example, UPLO = 'U',
*> TRANS = 'T', and DIAG = 'N' for a triangular routine would
*> be specified as OPTS = 'UTN'.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*> N1 is INTEGER
*> \endverbatim
*>
*> \param[in] N2
*> \verbatim
*> N2 is INTEGER
*> \endverbatim
*>
*> \param[in] N3
*> \verbatim
*> N3 is INTEGER
*> \endverbatim
*>
*> \param[in] N4
*> \verbatim
*> N4 is INTEGER
*>
*> Problem dimensions for the subroutine NAME; these may not all
*> be required.
*> \endverbatim
*>
*> \result ILAENV
*> \verbatim
*> ILAENV is INTEGER
*> >= 0: the value of the parameter specified by ISPEC
*> < 0: if ILAENV = -k, the k-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup aux_eig
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The following conventions have been used when calling ILAENV from the
*> LAPACK routines:
*> 1) OPTS is a concatenation of all of the character options to
*> subroutine NAME, in the same order that they appear in the
*> argument list for NAME, even if they are not used in determining
*> the value of the parameter specified by ISPEC.
*> 2) The problem dimensions N1, N2, N3, N4 are specified in the order
*> that they appear in the argument list for NAME. N1 is used
*> first, N2 second, and so on, and unused problem dimensions are
*> passed a value of -1.
*> 3) The parameter value returned by ILAENV is checked for validity in
*> the calling subroutine. For example, ILAENV is used to retrieve
*> the optimal blocksize for STRTRI as follows:
*>
*> NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
*> IF( NB.LE.1 ) NB = MAX( 1, N )
*> \endverbatim
*>
* =====================================================================
INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3,
$ N4 )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*( * ) NAME, OPTS
INTEGER ISPEC, N1, N2, N3, N4
* ..
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC INT, MIN, REAL
* ..
* .. External Functions ..
INTEGER IEEECK
EXTERNAL IEEECK
* ..
* .. Arrays in Common ..
INTEGER IPARMS( 100 )
* ..
* .. Common blocks ..
COMMON / CLAENV / IPARMS
* ..
* .. Save statement ..
SAVE / CLAENV /
* ..
* .. Executable Statements ..
*
IF( ISPEC.GE.1 .AND. ISPEC.LE.5 ) THEN
*
* Return a value from the common block.
*
ILAENV = IPARMS( ISPEC )
*
ELSE IF( ISPEC.EQ.6 ) THEN
*
* Compute SVD crossover point.
*
ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
*
ELSE IF( ISPEC.GE.7 .AND. ISPEC.LE.9 ) THEN
*
* Return a value from the common block.
*
ILAENV = IPARMS( ISPEC )
*
ELSE IF( ISPEC.EQ.10 ) THEN
*
* IEEE NaN arithmetic can be trusted not to trap
*
C ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 1, 0.0, 1.0 )
END IF
*
ELSE IF( ISPEC.EQ.11 ) THEN
*
* Infinity arithmetic can be trusted not to trap
*
C ILAENV = 0
ILAENV = 1
IF( ILAENV.EQ.1 ) THEN
ILAENV = IEEECK( 0, 0.0, 1.0 )
END IF
*
ELSE IF(( ISPEC.GE.12 ) .AND. (ISPEC.LE.16)) THEN
*
* 12 <= ISPEC <= 16: xHSEQR or one of its subroutines.
*
ILAENV = IPARMS( ISPEC )
* WRITE(*,*) 'ISPEC = ',ISPEC,' ILAENV =',ILAENV
* ILAENV = IPARMQ( ISPEC, NAME, OPTS, N1, N2, N3, N4 )
*
ELSE
*
* Invalid value for ISPEC
*
ILAENV = -1
END IF
*
RETURN
*
* End of ILAENV
*
END
INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
*
INTEGER INMIN, INWIN, INIBL, ISHFTS, IACC22
PARAMETER ( INMIN = 12, INWIN = 13, INIBL = 14,
$ ISHFTS = 15, IACC22 = 16 )
INTEGER NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP
PARAMETER ( NMIN = 11, K22MIN = 14, KACMIN = 14,
$ NIBBLE = 14, KNWSWP = 500 )
REAL TWO
PARAMETER ( TWO = 2.0 )
* ..
* .. Scalar Arguments ..
INTEGER IHI, ILO, ISPEC, LWORK, N
CHARACTER NAME*( * ), OPTS*( * )
* ..
* .. Local Scalars ..
INTEGER NH, NS
* ..
* .. Intrinsic Functions ..
INTRINSIC LOG, MAX, MOD, NINT, REAL
* ..
* .. Executable Statements ..
IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR.
$ ( ISPEC.EQ.IACC22 ) ) THEN
*
* ==== Set the number simultaneous shifts ====
*
NH = IHI - ILO + 1
NS = 2
IF( NH.GE.30 )
$ NS = 4
IF( NH.GE.60 )
$ NS = 10
IF( NH.GE.150 )
$ NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) )
IF( NH.GE.590 )
$ NS = 64
IF( NH.GE.3000 )
$ NS = 128
IF( NH.GE.6000 )
$ NS = 256
NS = MAX( 2, NS-MOD( NS, 2 ) )
END IF
*
IF( ISPEC.EQ.INMIN ) THEN
*
*
* ===== Matrices of order smaller than NMIN get sent
* . to LAHQR, the classic double shift algorithm.
* . This must be at least 11. ====
*
IPARMQ = NMIN
*
ELSE IF( ISPEC.EQ.INIBL ) THEN
*
* ==== INIBL: skip a multi-shift qr iteration and
* . whenever aggressive early deflation finds
* . at least (NIBBLE*(window size)/100) deflations. ====
*
IPARMQ = NIBBLE
*
ELSE IF( ISPEC.EQ.ISHFTS ) THEN
*
* ==== NSHFTS: The number of simultaneous shifts =====
*
IPARMQ = NS
*
ELSE IF( ISPEC.EQ.INWIN ) THEN
*
* ==== NW: deflation window size. ====
*
IF( NH.LE.KNWSWP ) THEN
IPARMQ = NS
ELSE
IPARMQ = 3*NS / 2
END IF
*
ELSE IF( ISPEC.EQ.IACC22 ) THEN
*
* ==== IACC22: Whether to accumulate reflections
* . before updating the far-from-diagonal elements
* . and whether to use 2-by-2 block structure while
* . doing it. A small amount of work could be saved
* . by making this choice dependent also upon the
* . NH=IHI-ILO+1.
*
IPARMQ = 0
IF( NS.GE.KACMIN )
$ IPARMQ = 1
IF( NS.GE.K22MIN )
$ IPARMQ = 2
*
ELSE
* ===== invalid value of ispec =====
IPARMQ = -1
*
END IF
*
* ==== End of IPARMQ ====
*
END
|