1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
*> \brief \b DSVDCH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSVDCH( N, S, E, SVD, TOL, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, N
* DOUBLE PRECISION TOL
* ..
* .. Array Arguments ..
* DOUBLE PRECISION E( * ), S( * ), SVD( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSVDCH checks to see if SVD(1) ,..., SVD(N) are accurate singular
*> values of the bidiagonal matrix B with diagonal entries
*> S(1) ,..., S(N) and superdiagonal entries E(1) ,..., E(N-1)).
*> It does this by expanding each SVD(I) into an interval
*> [SVD(I) * (1-EPS) , SVD(I) * (1+EPS)], merging overlapping intervals
*> if any, and using Sturm sequences to count and verify whether each
*> resulting interval has the correct number of singular values (using
*> DSVDCT). Here EPS=TOL*MAX(N/10,1)*MAZHEP, where MACHEP is the
*> machine precision. The routine assumes the singular values are sorted
*> with SVD(1) the largest and SVD(N) smallest. If each interval
*> contains the correct number of singular values, INFO = 0 is returned,
*> otherwise INFO is the index of the first singular value in the first
*> bad interval.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (N)
*> The diagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The superdiagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] SVD
*> \verbatim
*> SVD is DOUBLE PRECISION array, dimension (N)
*> The computed singular values to be checked.
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*> TOL is DOUBLE PRECISION
*> Error tolerance for checking, a multiplier of the
*> machine precision.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> =0 if the singular values are all correct (to within
*> 1 +- TOL*MAZHEPS)
*> >0 if the interval containing the INFO-th singular value
*> contains the incorrect number of singular values.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DSVDCH( N, S, E, SVD, TOL, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, N
DOUBLE PRECISION TOL
* ..
* .. Array Arguments ..
DOUBLE PRECISION E( * ), S( * ), SVD( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
INTEGER BPNT, COUNT, NUML, NUMU, TPNT
DOUBLE PRECISION EPS, LOWER, OVFL, TUPPR, UNFL, UNFLEP, UPPER
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DSVDCT
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Executable Statements ..
*
* Get machine constants
*
INFO = 0
IF( N.LE.0 )
$ RETURN
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
EPS = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* UNFLEP is chosen so that when an eigenvalue is multiplied by the
* scale factor sqrt(OVFL)*sqrt(sqrt(UNFL))/MX in DSVDCT, it exceeds
* sqrt(UNFL), which is the lower limit for DSVDCT.
*
UNFLEP = ( SQRT( SQRT( UNFL ) ) / SQRT( OVFL ) )*SVD( 1 ) +
$ UNFL / EPS
*
* The value of EPS works best when TOL .GE. 10.
*
EPS = TOL*MAX( N / 10, 1 )*EPS
*
* TPNT points to singular value at right endpoint of interval
* BPNT points to singular value at left endpoint of interval
*
TPNT = 1
BPNT = 1
*
* Begin loop over all intervals
*
10 CONTINUE
UPPER = ( ONE+EPS )*SVD( TPNT ) + UNFLEP
LOWER = ( ONE-EPS )*SVD( BPNT ) - UNFLEP
IF( LOWER.LE.UNFLEP )
$ LOWER = -UPPER
*
* Begin loop merging overlapping intervals
*
20 CONTINUE
IF( BPNT.EQ.N )
$ GO TO 30
TUPPR = ( ONE+EPS )*SVD( BPNT+1 ) + UNFLEP
IF( TUPPR.LT.LOWER )
$ GO TO 30
*
* Merge
*
BPNT = BPNT + 1
LOWER = ( ONE-EPS )*SVD( BPNT ) - UNFLEP
IF( LOWER.LE.UNFLEP )
$ LOWER = -UPPER
GO TO 20
30 CONTINUE
*
* Count singular values in interval [ LOWER, UPPER ]
*
CALL DSVDCT( N, S, E, LOWER, NUML )
CALL DSVDCT( N, S, E, UPPER, NUMU )
COUNT = NUMU - NUML
IF( LOWER.LT.ZERO )
$ COUNT = COUNT / 2
IF( COUNT.NE.BPNT-TPNT+1 ) THEN
*
* Wrong number of singular values in interval
*
INFO = TPNT
GO TO 40
END IF
TPNT = BPNT + 1
BPNT = TPNT
IF( TPNT.LE.N )
$ GO TO 10
40 CONTINUE
RETURN
*
* End of DSVDCH
*
END
|