summaryrefslogtreecommitdiff
path: root/TESTING/EIG/dsgt01.f
blob: c63c0eeb52943422ac8617afe74f834dce7954dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
*> \brief \b DSGT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
*                          WORK, RESULT )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            ITYPE, LDA, LDB, LDZ, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), RESULT( * ),
*      $                   WORK( * ), Z( LDZ, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DDGT01 checks a decomposition of the form
*>
*>    A Z   =  B Z D or
*>    A B Z =  Z D or
*>    B A Z =  Z D
*>
*> where A is a symmetric matrix, B is
*> symmetric positive definite, Z is orthogonal, and D is diagonal.
*>
*> One of the following test ratios is computed:
*>
*> ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
*>
*> ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
*>
*> ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          The form of the symmetric generalized eigenproblem.
*>          = 1:  A*z = (lambda)*B*z
*>          = 2:  A*B*z = (lambda)*z
*>          = 3:  B*A*z = (lambda)*z
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrices A and B is stored.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of eigenvalues found.  0 <= M <= N.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
*>          The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
*>          The original symmetric positive definite matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension (LDZ, M)
*>          The computed eigenvectors of the generalized eigenproblem.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (M)
*>          The computed eigenvalues of the generalized eigenproblem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (N*N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (1)
*>          The test ratio as described above.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
     $                   WORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, LDA, LDB, LDZ, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), RESULT( * ),
     $                   WORK( * ), Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ANORM, ULP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSYMM
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      ULP = DLAMCH( 'Epsilon' )
*
*     Compute product of 1-norms of A and Z.
*
      ANORM = DLANSY( '1', UPLO, N, A, LDA, WORK )*
     $        DLANGE( '1', N, M, Z, LDZ, WORK )
      IF( ANORM.EQ.ZERO )
     $   ANORM = ONE
*
      IF( ITYPE.EQ.1 ) THEN
*
*        Norm of AZ - BZD
*
         CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
     $               WORK, N )
         DO 10 I = 1, M
            CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
   10    CONTINUE
         CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, -ONE,
     $               WORK, N )
*
         RESULT( 1 ) = ( DLANGE( '1', N, M, WORK, N, WORK ) / ANORM ) /
     $                 ( N*ULP )
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Norm of ABZ - ZD
*
         CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, ZERO,
     $               WORK, N )
         DO 20 I = 1, M
            CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
   20    CONTINUE
         CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, WORK, N, -ONE, Z,
     $               LDZ )
*
         RESULT( 1 ) = ( DLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
     $                 ( N*ULP )
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Norm of BAZ - ZD
*
         CALL DSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
     $               WORK, N )
         DO 30 I = 1, M
            CALL DSCAL( N, D( I ), Z( 1, I ), 1 )
   30    CONTINUE
         CALL DSYMM( 'Left', UPLO, N, M, ONE, B, LDB, WORK, N, -ONE, Z,
     $               LDZ )
*
         RESULT( 1 ) = ( DLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
     $                 ( N*ULP )
      END IF
*
      RETURN
*
*     End of DDGT01
*
      END