1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
|
*> \brief \b CDRGVX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI,
* ALPHA, BETA, VL, VR, ILO, IHI, LSCALE, RSCALE,
* S, STRU, DIF, DIFTRU, WORK, LWORK, RWORK,
* IWORK, LIWORK, RESULT, BWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT,
* $ NSIZE
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * )
* INTEGER IWORK( * )
* REAL DIF( * ), DIFTRU( * ), LSCALE( * ),
* $ RESULT( 4 ), RSCALE( * ), RWORK( * ), S( * ),
* $ STRU( * )
* COMPLEX A( LDA, * ), AI( LDA, * ), ALPHA( * ),
* $ B( LDA, * ), BETA( * ), BI( LDA, * ),
* $ VL( LDA, * ), VR( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDRGVX checks the nonsymmetric generalized eigenvalue problem
*> expert driver CGGEVX.
*>
*> CGGEVX computes the generalized eigenvalues, (optionally) the left
*> and/or right eigenvectors, (optionally) computes a balancing
*> transformation to improve the conditioning, and (optionally)
*> reciprocal condition numbers for the eigenvalues and eigenvectors.
*>
*> When CDRGVX is called with NSIZE > 0, two types of test matrix pairs
*> are generated by the subroutine SLATM6 and test the driver CGGEVX.
*> The test matrices have the known exact condition numbers for
*> eigenvalues. For the condition numbers of the eigenvectors
*> corresponding the first and last eigenvalues are also know
*> ``exactly'' (see CLATM6).
*> For each matrix pair, the following tests will be performed and
*> compared with the threshold THRESH.
*>
*> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
*>
*> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
*>
*> where l**H is the conjugate tranpose of l.
*>
*> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
*>
*> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
*>
*> (3) The condition number S(i) of eigenvalues computed by CGGEVX
*> differs less than a factor THRESH from the exact S(i) (see
*> CLATM6).
*>
*> (4) DIF(i) computed by CTGSNA differs less than a factor 10*THRESH
*> from the exact value (for the 1st and 5th vectors only).
*>
*> Test Matrices
*> =============
*>
*> Two kinds of test matrix pairs
*> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
*> are used in the tests:
*>
*> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
*> 0 2+a 0 0 0 0 1 0 0 0
*> 0 0 3+a 0 0 0 0 1 0 0
*> 0 0 0 4+a 0 0 0 0 1 0
*> 0 0 0 0 5+a , 0 0 0 0 1 , and
*>
*> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0
*> 1 1 0 0 0 0 1 0 0 0
*> 0 0 1 0 0 0 0 1 0 0
*> 0 0 0 1+a 1+b 0 0 0 1 0
*> 0 0 0 -1-b 1+a , 0 0 0 0 1 .
*>
*> In both cases the same inverse(YH) and inverse(X) are used to compute
*> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
*>
*> YH: = 1 0 -y y -y X = 1 0 -x -x x
*> 0 1 -y y -y 0 1 x -x -x
*> 0 0 1 0 0 0 0 1 0 0
*> 0 0 0 1 0 0 0 0 1 0
*> 0 0 0 0 1, 0 0 0 0 1 , where
*>
*> a, b, x and y will have all values independently of each other from
*> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZE
*> \verbatim
*> NSIZE is INTEGER
*> The number of sizes of matrices to use. NSIZE must be at
*> least zero. If it is zero, no randomly generated matrices
*> are tested, but any test matrices read from NIN will be
*> tested. If it is not zero, then N = 5.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> The FORTRAN unit number for reading in the data file of
*> problems to solve.
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, NSIZE)
*> Used to hold the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, AI, BI, Ao, and Bo.
*> It must be at least 1 and at least NSIZE.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDA, NSIZE)
*> Used to hold the matrix whose eigenvalues are to be
*> computed. On exit, B contains the last matrix actually used.
*> \endverbatim
*>
*> \param[out] AI
*> \verbatim
*> AI is COMPLEX array, dimension (LDA, NSIZE)
*> Copy of A, modified by CGGEVX.
*> \endverbatim
*>
*> \param[out] BI
*> \verbatim
*> BI is COMPLEX array, dimension (LDA, NSIZE)
*> Copy of B, modified by CGGEVX.
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX array, dimension (NSIZE)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (NSIZE)
*>
*> On exit, ALPHA/BETA are the eigenvalues.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*> VL is COMPLEX array, dimension (LDA, NSIZE)
*> VL holds the left eigenvectors computed by CGGEVX.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*> VR is COMPLEX array, dimension (LDA, NSIZE)
*> VR holds the right eigenvectors computed by CGGEVX.
*> \endverbatim
*>
*> \param[out] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[out] IHI
*> \verbatim
*> IHI is INTEGER
*> \endverbatim
*>
*> \param[out] LSCALE
*> \verbatim
*> LSCALE is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RSCALE
*> \verbatim
*> RSCALE is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] STRU
*> \verbatim
*> STRU is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] DIF
*> \verbatim
*> DIF is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] DIFTRU
*> \verbatim
*> DIFTRU is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> Leading dimension of WORK. LWORK >= 2*N*N + 2*N
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (6*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (LIWORK)
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> Leading dimension of IWORK. LIWORK >= N+2.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (4)
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI,
$ ALPHA, BETA, VL, VR, ILO, IHI, LSCALE, RSCALE,
$ S, STRU, DIF, DIFTRU, WORK, LWORK, RWORK,
$ IWORK, LIWORK, RESULT, BWORK, INFO )
*
* -- LAPACK test routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT,
$ NSIZE
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
REAL DIF( * ), DIFTRU( * ), LSCALE( * ),
$ RESULT( 4 ), RSCALE( * ), RWORK( * ), S( * ),
$ STRU( * )
COMPLEX A( LDA, * ), AI( LDA, * ), ALPHA( * ),
$ B( LDA, * ), BETA( * ), BI( LDA, * ),
$ VL( LDA, * ), VR( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TEN, TNTH, HALF
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1,
$ TNTH = 1.0E-1, HALF = 0.5E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IPTYPE, IWA, IWB, IWX, IWY, J, LINFO,
$ MAXWRK, MINWRK, N, NERRS, NMAX, NPTKNT, NTESTT
REAL ABNORM, ANORM, BNORM, RATIO1, RATIO2, THRSH2,
$ ULP, ULPINV
* ..
* .. Local Arrays ..
COMPLEX WEIGHT( 5 )
* ..
* .. External Functions ..
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL ILAENV, CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, CGET52, CGGEVX, CLACPY, CLATM6, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
NMAX = 5
*
IF( NSIZE.LT.0 ) THEN
INFO = -1
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -2
ELSE IF( NIN.LE.0 ) THEN
INFO = -3
ELSE IF( NOUT.LE.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
INFO = -6
ELSE IF( LIWORK.LT.NMAX+2 ) THEN
INFO = -26
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.)
*
MINWRK = 1
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
MINWRK = 2*NMAX*( NMAX+1 )
MAXWRK = NMAX*( 1+ILAENV( 1, 'CGEQRF', ' ', NMAX, 1, NMAX,
$ 0 ) )
MAXWRK = MAX( MAXWRK, 2*NMAX*( NMAX+1 ) )
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK )
$ INFO = -23
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CDRGVX', -INFO )
RETURN
END IF
*
N = 5
ULP = SLAMCH( 'P' )
ULPINV = ONE / ULP
THRSH2 = TEN*THRESH
NERRS = 0
NPTKNT = 0
NTESTT = 0
*
IF( NSIZE.EQ.0 )
$ GO TO 90
*
* Parameters used for generating test matrices.
*
WEIGHT( 1 ) = CMPLX( TNTH, ZERO )
WEIGHT( 2 ) = CMPLX( HALF, ZERO )
WEIGHT( 3 ) = ONE
WEIGHT( 4 ) = ONE / WEIGHT( 2 )
WEIGHT( 5 ) = ONE / WEIGHT( 1 )
*
DO 80 IPTYPE = 1, 2
DO 70 IWA = 1, 5
DO 60 IWB = 1, 5
DO 50 IWX = 1, 5
DO 40 IWY = 1, 5
*
* generated a pair of test matrix
*
CALL CLATM6( IPTYPE, 5, A, LDA, B, VR, LDA, VL,
$ LDA, WEIGHT( IWA ), WEIGHT( IWB ),
$ WEIGHT( IWX ), WEIGHT( IWY ), STRU,
$ DIFTRU )
*
* Compute eigenvalues/eigenvectors of (A, B).
* Compute eigenvalue/eigenvector condition numbers
* using computed eigenvectors.
*
CALL CLACPY( 'F', N, N, A, LDA, AI, LDA )
CALL CLACPY( 'F', N, N, B, LDA, BI, LDA )
*
CALL CGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI,
$ LDA, ALPHA, BETA, VL, LDA, VR, LDA,
$ ILO, IHI, LSCALE, RSCALE, ANORM,
$ BNORM, S, DIF, WORK, LWORK, RWORK,
$ IWORK, BWORK, LINFO )
IF( LINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9999 )'CGGEVX', LINFO, N,
$ IPTYPE, IWA, IWB, IWX, IWY
GO TO 30
END IF
*
* Compute the norm(A, B)
*
CALL CLACPY( 'Full', N, N, AI, LDA, WORK, N )
CALL CLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ),
$ N )
ABNORM = CLANGE( 'Fro', N, 2*N, WORK, N, RWORK )
*
* Tests (1) and (2)
*
RESULT( 1 ) = ZERO
CALL CGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA,
$ ALPHA, BETA, WORK, RWORK,
$ RESULT( 1 ) )
IF( RESULT( 2 ).GT.THRESH ) THEN
WRITE( NOUT, FMT = 9998 )'Left', 'CGGEVX',
$ RESULT( 2 ), N, IPTYPE, IWA, IWB, IWX, IWY
END IF
*
RESULT( 2 ) = ZERO
CALL CGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA,
$ ALPHA, BETA, WORK, RWORK,
$ RESULT( 2 ) )
IF( RESULT( 3 ).GT.THRESH ) THEN
WRITE( NOUT, FMT = 9998 )'Right', 'CGGEVX',
$ RESULT( 3 ), N, IPTYPE, IWA, IWB, IWX, IWY
END IF
*
* Test (3)
*
RESULT( 3 ) = ZERO
DO 10 I = 1, N
IF( S( I ).EQ.ZERO ) THEN
IF( STRU( I ).GT.ABNORM*ULP )
$ RESULT( 3 ) = ULPINV
ELSE IF( STRU( I ).EQ.ZERO ) THEN
IF( S( I ).GT.ABNORM*ULP )
$ RESULT( 3 ) = ULPINV
ELSE
RWORK( I ) = MAX( ABS( STRU( I ) / S( I ) ),
$ ABS( S( I ) / STRU( I ) ) )
RESULT( 3 ) = MAX( RESULT( 3 ), RWORK( I ) )
END IF
10 CONTINUE
*
* Test (4)
*
RESULT( 4 ) = ZERO
IF( DIF( 1 ).EQ.ZERO ) THEN
IF( DIFTRU( 1 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN
IF( DIF( 1 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIF( 5 ).EQ.ZERO ) THEN
IF( DIFTRU( 5 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN
IF( DIF( 5 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE
RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ),
$ ABS( DIF( 1 ) / DIFTRU( 1 ) ) )
RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ),
$ ABS( DIF( 5 ) / DIFTRU( 5 ) ) )
RESULT( 4 ) = MAX( RATIO1, RATIO2 )
END IF
*
NTESTT = NTESTT + 4
*
* Print out tests which fail.
*
DO 20 J = 1, 4
IF( ( RESULT( J ).GE.THRSH2 .AND. J.GE.4 ) .OR.
$ ( RESULT( J ).GE.THRESH .AND. J.LE.3 ) )
$ THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9997 )'CXV'
*
* Print out messages for built-in examples
*
* Matrix types
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )
WRITE( NOUT, FMT = 9993 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9992 )'''',
$ 'transpose', ''''
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0 ) THEN
WRITE( NOUT, FMT = 9991 )IPTYPE, IWA,
$ IWB, IWX, IWY, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9990 )IPTYPE, IWA,
$ IWB, IWX, IWY, J, RESULT( J )
END IF
END IF
20 CONTINUE
*
30 CONTINUE
*
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
80 CONTINUE
*
GO TO 150
*
90 CONTINUE
*
* Read in data from file to check accuracy of condition estimation
* Read input data until N=0
*
READ( NIN, FMT = *, END = 150 )N
IF( N.EQ.0 )
$ GO TO 150
DO 100 I = 1, N
READ( NIN, FMT = * )( A( I, J ), J = 1, N )
100 CONTINUE
DO 110 I = 1, N
READ( NIN, FMT = * )( B( I, J ), J = 1, N )
110 CONTINUE
READ( NIN, FMT = * )( STRU( I ), I = 1, N )
READ( NIN, FMT = * )( DIFTRU( I ), I = 1, N )
*
NPTKNT = NPTKNT + 1
*
* Compute eigenvalues/eigenvectors of (A, B).
* Compute eigenvalue/eigenvector condition numbers
* using computed eigenvectors.
*
CALL CLACPY( 'F', N, N, A, LDA, AI, LDA )
CALL CLACPY( 'F', N, N, B, LDA, BI, LDA )
*
CALL CGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI, LDA, ALPHA, BETA,
$ VL, LDA, VR, LDA, ILO, IHI, LSCALE, RSCALE, ANORM,
$ BNORM, S, DIF, WORK, LWORK, RWORK, IWORK, BWORK,
$ LINFO )
*
IF( LINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9987 )'CGGEVX', LINFO, N, NPTKNT
GO TO 140
END IF
*
* Compute the norm(A, B)
*
CALL CLACPY( 'Full', N, N, AI, LDA, WORK, N )
CALL CLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ), N )
ABNORM = CLANGE( 'Fro', N, 2*N, WORK, N, RWORK )
*
* Tests (1) and (2)
*
RESULT( 1 ) = ZERO
CALL CGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA, ALPHA, BETA,
$ WORK, RWORK, RESULT( 1 ) )
IF( RESULT( 2 ).GT.THRESH ) THEN
WRITE( NOUT, FMT = 9986 )'Left', 'CGGEVX', RESULT( 2 ), N,
$ NPTKNT
END IF
*
RESULT( 2 ) = ZERO
CALL CGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA, ALPHA, BETA,
$ WORK, RWORK, RESULT( 2 ) )
IF( RESULT( 3 ).GT.THRESH ) THEN
WRITE( NOUT, FMT = 9986 )'Right', 'CGGEVX', RESULT( 3 ), N,
$ NPTKNT
END IF
*
* Test (3)
*
RESULT( 3 ) = ZERO
DO 120 I = 1, N
IF( S( I ).EQ.ZERO ) THEN
IF( STRU( I ).GT.ABNORM*ULP )
$ RESULT( 3 ) = ULPINV
ELSE IF( STRU( I ).EQ.ZERO ) THEN
IF( S( I ).GT.ABNORM*ULP )
$ RESULT( 3 ) = ULPINV
ELSE
RWORK( I ) = MAX( ABS( STRU( I ) / S( I ) ),
$ ABS( S( I ) / STRU( I ) ) )
RESULT( 3 ) = MAX( RESULT( 3 ), RWORK( I ) )
END IF
120 CONTINUE
*
* Test (4)
*
RESULT( 4 ) = ZERO
IF( DIF( 1 ).EQ.ZERO ) THEN
IF( DIFTRU( 1 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN
IF( DIF( 1 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIF( 5 ).EQ.ZERO ) THEN
IF( DIFTRU( 5 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN
IF( DIF( 5 ).GT.ABNORM*ULP )
$ RESULT( 4 ) = ULPINV
ELSE
RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ),
$ ABS( DIF( 1 ) / DIFTRU( 1 ) ) )
RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ),
$ ABS( DIF( 5 ) / DIFTRU( 5 ) ) )
RESULT( 4 ) = MAX( RATIO1, RATIO2 )
END IF
*
NTESTT = NTESTT + 4
*
* Print out tests which fail.
*
DO 130 J = 1, 4
IF( RESULT( J ).GE.THRSH2 ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9997 )'CXV'
*
* Print out messages for built-in examples
*
* Matrix types
*
WRITE( NOUT, FMT = 9996 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9992 )'''', 'transpose', ''''
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0 ) THEN
WRITE( NOUT, FMT = 9989 )NPTKNT, N, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9988 )NPTKNT, N, J, RESULT( J )
END IF
END IF
130 CONTINUE
*
140 CONTINUE
*
GO TO 90
150 CONTINUE
*
* Summary
*
CALL ALASVM( 'CXV', NOUT, NERRS, NTESTT, 0 )
*
WORK( 1 ) = MAXWRK
*
RETURN
*
9999 FORMAT( ' CDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ')' )
*
9998 FORMAT( ' CDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
$ 'N=', I6, ', JTYPE=', I6, ', IWA=', I5, ', IWB=', I5,
$ ', IWX=', I5, ', IWY=', I5 )
*
9997 FORMAT( / 1X, A3, ' -- Complex Expert Eigenvalue/vector',
$ ' problem driver' )
*
9996 FORMAT( 'Input Example' )
*
9995 FORMAT( ' Matrix types: ', / )
*
9994 FORMAT( ' TYPE 1: Da is diagonal, Db is identity, ',
$ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ',
$ / ' YH and X are left and right eigenvectors. ', / )
*
9993 FORMAT( ' TYPE 2: Da is quasi-diagonal, Db is identity, ',
$ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ',
$ / ' YH and X are left and right eigenvectors. ', / )
*
9992 FORMAT( / ' Tests performed: ', / 4X,
$ ' a is alpha, b is beta, l is a left eigenvector, ', / 4X,
$ ' r is a right eigenvector and ', A, ' means ', A, '.',
$ / ' 1 = max | ( b A - a B )', A, ' l | / const.',
$ / ' 2 = max | ( b A - a B ) r | / const.',
$ / ' 3 = max ( Sest/Stru, Stru/Sest ) ',
$ ' over all eigenvalues', /
$ ' 4 = max( DIFest/DIFtru, DIFtru/DIFest ) ',
$ ' over the 1st and 5th eigenvectors', / )
*
9991 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=',
$ I2, ', IWY=', I2, ', result ', I2, ' is', 0P, F8.2 )
*
9990 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=',
$ I2, ', IWY=', I2, ', result ', I2, ' is', 1P, E10.3 )
*
9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 0P, F8.2 )
*
9988 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 1P, E10.3 )
*
9987 FORMAT( ' CDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', Input example #', I2, ')' )
*
9986 FORMAT( ' CDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
$ 'N=', I6, ', Input Example #', I2, ')' )
*
* End of CDRGVX
*
END
|