summaryrefslogtreecommitdiff
path: root/TESTING/EIG/cbdt05.f
blob: c01c986981aa32053bb885c72fa33c4c85f93bbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CBDT05( M, N, A, LDA, S, NS, U, LDU, 
*                          VT, LDVT, WORK, RESID )                
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDU, LDVT, N, NS
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*      REAL               S( * )
*      COMPLEX            A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
*       ..
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
*>    S = U' * B * V
*> where U and V are orthogonal matrices and S is diagonal.
*>
*> The test ratio to test the singular value decomposition is
*>    RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
*> where VT = V' and EPS is the machine precision.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrices A and U.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices A and VT.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The m by n matrix A.
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*>          S is REAL array, dimension (NS)
*>          The singular values from the (partial) SVD of B, sorted in 
*>          decreasing order.
*> \endverbatim
*>
*> \param[in] NS
*> \verbatim
*>          NS is INTEGER
*>          The number of singular values/vectors from the (partial) 
*>          SVD of B.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is COMPLEX array, dimension (LDU,NS)
*>          The n by ns orthogonal matrix U in S = U' * B * V.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U.  LDU >= max(1,N)
*> \endverbatim
*>
*> \param[in] VT
*> \verbatim
*>          VT is COMPLEX array, dimension (LDVT,N)
*>          The n by ns orthogonal matrix V in S = U' * B * V.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>          The leading dimension of the array VT.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (M,N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          The test ratio:  norm(S - U' * A * V) / ( n * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE CBDT05( M, N, A, LDA, S, NS, U, LDU, 
     $                    VT, LDVT, WORK, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDU, LDVT, M, N, NS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               S( * )
      COMPLEX            A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
*     ..
*
* ======================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               ANORM, EPS
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SASUM, SLAMCH, CLANGE
      EXTERNAL           LSAME, ISAMAX, SASUM, SLAMCH, CLANGE
      REAL               SCASUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible.
*
      RESID = ZERO
      IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
     $   RETURN
*
      EPS = SLAMCH( 'Precision' )
      ANORM = CLANGE( 'M', M, N, A, LDA, DUM )
*
*     Compute U' * A * V.
*
      CALL CGEMM( 'N', 'C', M, NS, N, CONE, A, LDA, VT,
     $            LDVT, CZERO, WORK( 1+NS*NS ), M )
      CALL CGEMM( 'C', 'N', NS, NS, M, -CONE, U, LDU, WORK( 1+NS*NS ),
     $            M, CZERO, WORK, NS )
*
*     norm(S - U' * B * V)
*
      J = 0
      DO 10 I = 1, NS
         WORK( J+I ) =  WORK( J+I ) + CMPLX( S( I ), ZERO )
         RESID = MAX( RESID, SCASUM( NS, WORK( J+1 ), 1 ) )
         J = J + NS
   10 CONTINUE
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( ANORM.GE.RESID ) THEN
            RESID = ( RESID / ANORM ) / ( REAL( N )*EPS )
         ELSE
            IF( ANORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) /
     $                 ( REAL( N )*EPS )
            ELSE
               RESID = MIN( RESID / ANORM, REAL( N ) ) /
     $                 ( REAL( N )*EPS )
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of CBDT05
*
      END