summaryrefslogtreecommitdiff
path: root/SRC/zuncsd.f
blob: 723cd661af8210a1310575ea47b5858c8cd34492 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
      RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
     $                             SIGNS, M, P, Q, X11, LDX11, X12,
     $                             LDX12, X21, LDX21, X22, LDX22, THETA,
     $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
     $                             LDV2T, WORK, LWORK, RWORK, LRWORK,
     $                             IWORK, INFO )
      IMPLICIT NONE
*
*  -- LAPACK routine (version 3.3.1) --
*
*  -- Contributed by Brian Sutton of the Randolph-Macon College --
*  -- November 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
*
* @precisions normal z -> c
*
*     .. Scalar Arguments ..
      CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
      INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
     $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   THETA( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
     $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
     $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
     $                   * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNCSD computes the CS decomposition of an M-by-M partitioned
*  unitary matrix X:
*
*                                  [  I  0  0 |  0  0  0 ]
*                                  [  0  C  0 |  0 -S  0 ]
*      [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
*  X = [-----------] = [---------] [---------------------] [---------]   .
*      [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
*                                  [  0  S  0 |  0  C  0 ]
*                                  [  0  0  I |  0  0  0 ]
*
*  X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
*  (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
*  R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
*  which R = MIN(P,M-P,Q,M-Q).
*
*  Arguments
*  =========
*
*  JOBU1   (input) CHARACTER
*          = 'Y':      U1 is computed;
*          otherwise:  U1 is not computed.
*
*  JOBU2   (input) CHARACTER
*          = 'Y':      U2 is computed;
*          otherwise:  U2 is not computed.
*
*  JOBV1T  (input) CHARACTER
*          = 'Y':      V1T is computed;
*          otherwise:  V1T is not computed.
*
*  JOBV2T  (input) CHARACTER
*          = 'Y':      V2T is computed;
*          otherwise:  V2T is not computed.
*
*  TRANS   (input) CHARACTER
*          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
*                      order;
*          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
*                      major order.
*
*  SIGNS   (input) CHARACTER
*          = 'O':      The lower-left block is made nonpositive (the
*                      "other" convention);
*          otherwise:  The upper-right block is made nonpositive (the
*                      "default" convention).
*
*  M       (input) INTEGER
*          The number of rows and columns in X.
*
*  P       (input) INTEGER
*          The number of rows in X11 and X12. 0 <= P <= M.
*
*  Q       (input) INTEGER
*          The number of columns in X11 and X21. 0 <= Q <= M.
*
*  X       (input/workspace) COMPLEX*16 array, dimension (LDX,M)
*          On entry, the unitary matrix whose CSD is desired.
*
*  LDX     (input) INTEGER
*          The leading dimension of X. LDX >= MAX(1,M).
*
*  THETA   (output) DOUBLE PRECISION array, dimension (R), in which R =
*          MIN(P,M-P,Q,M-Q).
*          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
*          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*
*  U1      (output) COMPLEX*16 array, dimension (P)
*          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
*
*  LDU1    (input) INTEGER
*          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
*          MAX(1,P).
*
*  U2      (output) COMPLEX*16 array, dimension (M-P)
*          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
*          matrix U2.
*
*  LDU2    (input) INTEGER
*          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
*          MAX(1,M-P).
*
*  V1T     (output) COMPLEX*16 array, dimension (Q)
*          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
*          matrix V1**H.
*
*  LDV1T   (input) INTEGER
*          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
*          MAX(1,Q).
*
*  V2T     (output) COMPLEX*16 array, dimension (M-Q)
*          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
*          matrix V2**H.
*
*  LDV2T   (input) INTEGER
*          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
*          MAX(1,M-Q).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the work array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension MAX(1,LRWORK)
*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
*          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
*          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
*          define the matrix in intermediate bidiagonal-block form
*          remaining after nonconvergence. INFO specifies the number
*          of nonzero PHI's.
*
*  LRWORK  (input) INTEGER
*          The dimension of the array RWORK.
*
*          If LRWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the RWORK array, returns
*          this value as the first entry of the work array, and no error
*          message related to LRWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  ZBBCSD did not converge. See the description of RWORK
*                above for details.
*
*  Reference
*  =========
*
*  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*      Algorithms, 50(1):33-65, 2009.
*
*  ===================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   REALONE
      PARAMETER          ( REALONE = 1.0D0 )
      COMPLEX*16         NEGONE, ONE, PIOVER2, ZERO
      PARAMETER          ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
     $                     PIOVER2 = 1.57079632679489662D0,
     $                     ZERO = (0.0D0,0.0D0) )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST, SIGNST
      INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
     $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
     $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
     $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
     $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
     $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
     $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
     $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
      LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
     $                   WANTV1T, WANTV2T
      INTEGER            LRWORKMIN, LRWORKOPT
      LOGICAL            LRQUERY
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT, ZLASCL,
     $                   ZLASET, ZUNBDB, ZUNGLQ, ZUNGQR
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions
      INTRINSIC          COS, INT, MAX, MIN, SIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      WANTU1 = LSAME( JOBU1, 'Y' )
      WANTU2 = LSAME( JOBU2, 'Y' )
      WANTV1T = LSAME( JOBV1T, 'Y' )
      WANTV2T = LSAME( JOBV2T, 'Y' )
      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
      DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
      LQUERY = LWORK .EQ. -1
      LRQUERY = LRWORK .EQ. -1
      IF( M .LT. 0 ) THEN
         INFO = -7
      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
         INFO = -8
      ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
         INFO = -9
      ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
     $         ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
         INFO = -11
      ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
         INFO = -14
      ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
         INFO = -16
      ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
         INFO = -18
      ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
         INFO = -20
      END IF
*
*     Work with transpose if convenient
*
      IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
         IF( COLMAJOR ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
         IF( DEFAULTSIGNS ) THEN
            SIGNST = 'O'
         ELSE
            SIGNST = 'D'
         END IF
         CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
     $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
     $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
     $                U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
     $                INFO )
         RETURN
      END IF
*
*     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
*     convenient
*
      IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
         IF( DEFAULTSIGNS ) THEN
            SIGNST = 'O'
         ELSE
            SIGNST = 'D'
         END IF
         CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
     $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
     $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
     $                LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
         RETURN
      END IF
*
*     Compute workspace
*
      IF( INFO .EQ. 0 ) THEN
*
*        Real workspace
*
         IPHI = 2
         IB11D = IPHI + MAX( 1, Q - 1 )
         IB11E = IB11D + MAX( 1, Q )
         IB12D = IB11E + MAX( 1, Q - 1 )
         IB12E = IB12D + MAX( 1, Q )
         IB21D = IB12E + MAX( 1, Q - 1 )
         IB21E = IB21D + MAX( 1, Q )
         IB22D = IB21E + MAX( 1, Q - 1 )
         IB22E = IB22D + MAX( 1, Q )
         IBBCSD = IB22E + MAX( 1, Q - 1 )
         CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
     $                0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
     $                0, 0, 0, 0, 0, 0, 0, RWORK, -1, CHILDINFO )
         LBBCSDWORKOPT = INT( RWORK(1) )
         LBBCSDWORKMIN = LBBCSDWORKOPT
         LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
         LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
         RWORK(1) = LRWORKOPT
*
*        Complex workspace
*
         ITAUP1 = 2
         ITAUP2 = ITAUP1 + MAX( 1, P )
         ITAUQ1 = ITAUP2 + MAX( 1, M - P )
         ITAUQ2 = ITAUQ1 + MAX( 1, Q )
         IORGQR = ITAUQ2 + MAX( 1, M - Q )
         CALL ZUNGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
     $                CHILDINFO )
         LORGQRWORKOPT = INT( WORK(1) )
         LORGQRWORKMIN = MAX( 1, M - Q )
         IORGLQ = ITAUQ2 + MAX( 1, M - Q )
         CALL ZUNGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
     $                CHILDINFO )
         LORGLQWORKOPT = INT( WORK(1) )
         LORGLQWORKMIN = MAX( 1, M - Q )
         IORBDB = ITAUQ2 + MAX( 1, M - Q )
         CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
     $                X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK,
     $                -1, CHILDINFO )
         LORBDBWORKOPT = INT( WORK(1) )
         LORBDBWORKMIN = LORBDBWORKOPT
         LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
     $              IORBDB + LORBDBWORKOPT ) - 1
         LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
     $              IORBDB + LORBDBWORKMIN ) - 1
         WORK(1) = MAX(LWORKOPT,LWORKMIN)
*
         IF( LWORK .LT. LWORKMIN
     $       .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
            INFO = -22
         ELSE IF( LRWORK .LT. LRWORKMIN
     $            .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
            INFO = -24
         ELSE
            LORGQRWORK = LWORK - IORGQR + 1
            LORGLQWORK = LWORK - IORGLQ + 1
            LORBDBWORK = LWORK - IORBDB + 1
            LBBCSDWORK = LRWORK - IBBCSD + 1
         END IF
      END IF
*
*     Abort if any illegal arguments
*
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'ZUNCSD', -INFO )
         RETURN
      ELSE IF( LQUERY .OR. LRQUERY ) THEN
         RETURN
      END IF
*
*     Transform to bidiagonal block form
*
      CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
     $             LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
     $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
     $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
*
*     Accumulate Householder reflectors
*
      IF( COLMAJOR ) THEN
         IF( WANTU1 .AND. P .GT. 0 ) THEN
            CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
            CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
     $                   LORGQRWORK, INFO)
         END IF
         IF( WANTU2 .AND. M-P .GT. 0 ) THEN
            CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
            CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
         IF( WANTV1T .AND. Q .GT. 0 ) THEN
            CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
     $                   LDV1T )
            V1T(1, 1) = ONE
            DO J = 2, Q
               V1T(1,J) = ZERO
               V1T(J,1) = ZERO
            END DO
            CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
         IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
            CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
            CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
     $                   V2T(P+1,P+1), LDV2T )
            CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
      ELSE
         IF( WANTU1 .AND. P .GT. 0 ) THEN
            CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
            CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
     $                   LORGLQWORK, INFO)
         END IF
         IF( WANTU2 .AND. M-P .GT. 0 ) THEN
            CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
            CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
     $                   WORK(IORGLQ), LORGLQWORK, INFO )
         END IF
         IF( WANTV1T .AND. Q .GT. 0 ) THEN
            CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
     $                   LDV1T )
            V1T(1, 1) = ONE
            DO J = 2, Q
               V1T(1,J) = ZERO
               V1T(J,1) = ZERO
            END DO
            CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
         IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
            CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
            CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
     $                   V2T(P+1,P+1), LDV2T )
            CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
     $                   WORK(IORGQR), LORGQRWORK, INFO )
         END IF
      END IF
*
*     Compute the CSD of the matrix in bidiagonal-block form
*
      CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
     $             RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
     $             LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
     $             RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
     $             RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
     $             LBBCSDWORK, INFO )
*
*     Permute rows and columns to place identity submatrices in top-
*     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
*     block and/or bottom-right corner of (2,1)-block and/or top-left
*     corner of (2,2)-block 
*
      IF( Q .GT. 0 .AND. WANTU2 ) THEN
         DO I = 1, Q
            IWORK(I) = M - P - Q + I
         END DO
         DO I = Q + 1, M - P
            IWORK(I) = I - Q
         END DO
         IF( COLMAJOR ) THEN
            CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
         ELSE
            CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
         END IF
      END IF
      IF( M .GT. 0 .AND. WANTV2T ) THEN
         DO I = 1, P
            IWORK(I) = M - P - Q + I
         END DO
         DO I = P + 1, M - Q
            IWORK(I) = I - P
         END DO
         IF( .NOT. COLMAJOR ) THEN
            CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
         ELSE
            CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
         END IF
      END IF
*
      RETURN
*
*     End ZUNCSD
*
      END