1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
*> \brief \b ZTREVC3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZTREVC3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
* $ LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
*
* .. Scalar Arguments ..
* CHARACTER HOWMNY, SIDE
* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
* ..
* .. Array Arguments ..
* LOGICAL SELECT( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTREVC3 computes some or all of the right and/or left eigenvectors of
*> a complex upper triangular matrix T.
*> Matrices of this type are produced by the Schur factorization of
*> a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR.
*>
*> The right eigenvector x and the left eigenvector y of T corresponding
*> to an eigenvalue w are defined by:
*>
*> T*x = w*x, (y**H)*T = w*(y**H)
*>
*> where y**H denotes the conjugate transpose of the vector y.
*> The eigenvalues are not input to this routine, but are read directly
*> from the diagonal of T.
*>
*> This routine returns the matrices X and/or Y of right and left
*> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
*> input matrix. If Q is the unitary factor that reduces a matrix A to
*> Schur form T, then Q*X and Q*Y are the matrices of right and left
*> eigenvectors of A.
*>
*> This uses a Level 3 BLAS version of the back transformation.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'R': compute right eigenvectors only;
*> = 'L': compute left eigenvectors only;
*> = 'B': compute both right and left eigenvectors.
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*> HOWMNY is CHARACTER*1
*> = 'A': compute all right and/or left eigenvectors;
*> = 'B': compute all right and/or left eigenvectors,
*> backtransformed using the matrices supplied in
*> VR and/or VL;
*> = 'S': compute selected right and/or left eigenvectors,
*> as indicated by the logical array SELECT.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*> SELECT is LOGICAL array, dimension (N)
*> If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*> computed.
*> The eigenvector corresponding to the j-th eigenvalue is
*> computed if SELECT(j) = .TRUE..
*> Not referenced if HOWMNY = 'A' or 'B'.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in,out] T
*> \verbatim
*> T is COMPLEX*16 array, dimension (LDT,N)
*> The upper triangular matrix T. T is modified, but restored
*> on exit.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*> VL is COMPLEX*16 array, dimension (LDVL,MM)
*> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*> contain an N-by-N matrix Q (usually the unitary matrix Q of
*> Schur vectors returned by ZHSEQR).
*> On exit, if SIDE = 'L' or 'B', VL contains:
*> if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*> if HOWMNY = 'B', the matrix Q*Y;
*> if HOWMNY = 'S', the left eigenvectors of T specified by
*> SELECT, stored consecutively in the columns
*> of VL, in the same order as their
*> eigenvalues.
*> Not referenced if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the array VL.
*> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*> VR is COMPLEX*16 array, dimension (LDVR,MM)
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*> contain an N-by-N matrix Q (usually the unitary matrix Q of
*> Schur vectors returned by ZHSEQR).
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of T;
*> if HOWMNY = 'B', the matrix Q*X;
*> if HOWMNY = 'S', the right eigenvectors of T specified by
*> SELECT, stored consecutively in the columns
*> of VR, in the same order as their
*> eigenvalues.
*> Not referenced if SIDE = 'L'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the array VR.
*> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*> MM is INTEGER
*> The number of columns in the arrays VL and/or VR. MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The number of columns in the arrays VL and/or VR actually
*> used to store the eigenvectors.
*> If HOWMNY = 'A' or 'B', M is set to N.
*> Each selected eigenvector occupies one column.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of array WORK. LWORK >= max(1,2*N).
*> For optimum performance, LWORK >= N + 2*N*NB, where NB is
*> the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (LRWORK)
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of array RWORK. LRWORK >= max(1,N).
*>
*> If LRWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the RWORK array, returns
*> this value as the first entry of the RWORK array, and no error
*> message related to LRWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
* @precisions fortran z -> c
*
*> \ingroup complex16OTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The algorithm used in this program is basically backward (forward)
*> substitution, with scaling to make the the code robust against
*> possible overflow.
*>
*> Each eigenvector is normalized so that the element of largest
*> magnitude has magnitude 1; here the magnitude of a complex number
*> (x,y) is taken to be |x| + |y|.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
$ LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
IMPLICIT NONE
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER HOWMNY, SIDE
INTEGER INFO, LDT, LDVL, LDVR, LWORK, LRWORK, M, MM, N
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
INTEGER NBMIN, NBMAX
PARAMETER ( NBMIN = 8, NBMAX = 128 )
* ..
* .. Local Scalars ..
LOGICAL ALLV, BOTHV, LEFTV, LQUERY, OVER, RIGHTV, SOMEV
INTEGER I, II, IS, J, K, KI, IV, MAXWRK, NB
DOUBLE PRECISION OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
COMPLEX*16 CDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV, IZAMAX
DOUBLE PRECISION DLAMCH, DZASUM
EXTERNAL LSAME, ILAENV, IZAMAX, DLAMCH, DZASUM
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, CONJG, AIMAG, MAX
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( AIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters
*
BOTHV = LSAME( SIDE, 'B' )
RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
ALLV = LSAME( HOWMNY, 'A' )
OVER = LSAME( HOWMNY, 'B' )
SOMEV = LSAME( HOWMNY, 'S' )
*
* Set M to the number of columns required to store the selected
* eigenvectors.
*
IF( SOMEV ) THEN
M = 0
DO 10 J = 1, N
IF( SELECT( J ) )
$ M = M + 1
10 CONTINUE
ELSE
M = N
END IF
*
INFO = 0
NB = ILAENV( 1, 'ZTREVC', SIDE // HOWMNY, N, -1, -1, -1 )
MAXWRK = N + 2*N*NB
WORK(1) = MAXWRK
RWORK(1) = N
LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
INFO = -1
ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
INFO = -8
ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
INFO = -10
ELSE IF( MM.LT.M ) THEN
INFO = -11
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
INFO = -14
ELSE IF ( LRWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -16
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTREVC3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
* Use blocked version of back-transformation if sufficient workspace.
* Zero-out the workspace to avoid potential NaN propagation.
*
IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
NB = (LWORK - N) / (2*N)
NB = MIN( NB, NBMAX )
CALL ZLASET( 'F', N, 1+2*NB, CZERO, CZERO, WORK, N )
ELSE
NB = 1
END IF
*
* Set the constants to control overflow.
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( N / ULP )
*
* Store the diagonal elements of T in working array WORK.
*
DO 20 I = 1, N
WORK( I ) = T( I, I )
20 CONTINUE
*
* Compute 1-norm of each column of strictly upper triangular
* part of T to control overflow in triangular solver.
*
RWORK( 1 ) = ZERO
DO 30 J = 2, N
RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
30 CONTINUE
*
IF( RIGHTV ) THEN
*
* ============================================================
* Compute right eigenvectors.
*
* IV is index of column in current block.
* Non-blocked version always uses IV=NB=1;
* blocked version starts with IV=NB, goes down to 1.
* (Note the "0-th" column is used to store the original diagonal.)
IV = NB
IS = M
DO 80 KI = N, 1, -1
IF( SOMEV ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 80
END IF
SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
* --------------------------------------------------------
* Complex right eigenvector
*
WORK( KI + IV*N ) = CONE
*
* Form right-hand side.
*
DO 40 K = 1, KI - 1
WORK( K + IV*N ) = -T( K, KI )
40 CONTINUE
*
* Solve upper triangular system:
* [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK.
*
DO 50 K = 1, KI - 1
T( K, K ) = T( K, K ) - T( KI, KI )
IF( CABS1( T( K, K ) ).LT.SMIN )
$ T( K, K ) = SMIN
50 CONTINUE
*
IF( KI.GT.1 ) THEN
CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
$ KI-1, T, LDT, WORK( 1 + IV*N ), SCALE,
$ RWORK, INFO )
WORK( KI + IV*N ) = SCALE
END IF
*
* Copy the vector x or Q*x to VR and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VR and normalize.
CALL ZCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
*
II = IZAMAX( KI, VR( 1, IS ), 1 )
REMAX = ONE / CABS1( VR( II, IS ) )
CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
DO 60 K = KI + 1, N
VR( K, IS ) = CZERO
60 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.GT.1 )
$ CALL ZGEMV( 'N', N, KI-1, CONE, VR, LDVR,
$ WORK( 1 + IV*N ), 1, DCMPLX( SCALE ),
$ VR( 1, KI ), 1 )
*
II = IZAMAX( N, VR( 1, KI ), 1 )
REMAX = ONE / CABS1( VR( II, KI ) )
CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out below vector
DO K = KI + 1, N
WORK( K + IV*N ) = CZERO
END DO
*
* Columns IV:NB of work are valid vectors.
* When the number of vectors stored reaches NB,
* or if this was last vector, do the GEMM
IF( (IV.EQ.1) .OR. (KI.EQ.1) ) THEN
CALL ZGEMM( 'N', 'N', N, NB-IV+1, KI+NB-IV, CONE,
$ VR, LDVR,
$ WORK( 1 + (IV)*N ), N,
$ CZERO,
$ WORK( 1 + (NB+IV)*N ), N )
* normalize vectors
DO K = IV, NB
II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
END DO
CALL ZLACPY( 'F', N, NB-IV+1,
$ WORK( 1 + (NB+IV)*N ), N,
$ VR( 1, KI ), LDVR )
IV = NB
ELSE
IV = IV - 1
END IF
END IF
*
* Restore the original diagonal elements of T.
*
DO 70 K = 1, KI - 1
T( K, K ) = WORK( K )
70 CONTINUE
*
IS = IS - 1
80 CONTINUE
END IF
*
IF( LEFTV ) THEN
*
* ============================================================
* Compute left eigenvectors.
*
* IV is index of column in current block.
* Non-blocked version always uses IV=1;
* blocked version starts with IV=1, goes up to NB.
* (Note the "0-th" column is used to store the original diagonal.)
IV = 1
IS = 1
DO 130 KI = 1, N
*
IF( SOMEV ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 130
END IF
SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
* --------------------------------------------------------
* Complex left eigenvector
*
WORK( KI + IV*N ) = CONE
*
* Form right-hand side.
*
DO 90 K = KI + 1, N
WORK( K + IV*N ) = -CONJG( T( KI, K ) )
90 CONTINUE
*
* Solve conjugate-transposed triangular system:
* [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK.
*
DO 100 K = KI + 1, N
T( K, K ) = T( K, K ) - T( KI, KI )
IF( CABS1( T( K, K ) ).LT.SMIN )
$ T( K, K ) = SMIN
100 CONTINUE
*
IF( KI.LT.N ) THEN
CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ 'Y', N-KI, T( KI+1, KI+1 ), LDT,
$ WORK( KI+1 + IV*N ), SCALE, RWORK, INFO )
WORK( KI + IV*N ) = SCALE
END IF
*
* Copy the vector x or Q*x to VL and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VL and normalize.
CALL ZCOPY( N-KI+1, WORK( KI + IV*N ), 1, VL(KI,IS), 1 )
*
II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
REMAX = ONE / CABS1( VL( II, IS ) )
CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
*
DO 110 K = 1, KI - 1
VL( K, IS ) = CZERO
110 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.LT.N )
$ CALL ZGEMV( 'N', N, N-KI, CONE, VL( 1, KI+1 ), LDVL,
$ WORK( KI+1 + IV*N ), 1, DCMPLX( SCALE ),
$ VL( 1, KI ), 1 )
*
II = IZAMAX( N, VL( 1, KI ), 1 )
REMAX = ONE / CABS1( VL( II, KI ) )
CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out above vector
* could go from KI-NV+1 to KI-1
DO K = 1, KI - 1
WORK( K + IV*N ) = CZERO
END DO
*
* Columns 1:IV of work are valid vectors.
* When the number of vectors stored reaches NB,
* or if this was last vector, do the GEMM
IF( (IV.EQ.NB) .OR. (KI.EQ.N) ) THEN
CALL ZGEMM( 'N', 'N', N, IV, N-KI+IV, CONE,
$ VL( 1, KI-IV+1 ), LDVL,
$ WORK( KI-IV+1 + (1)*N ), N,
$ CZERO,
$ WORK( 1 + (NB+1)*N ), N )
* normalize vectors
DO K = 1, IV
II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
END DO
CALL ZLACPY( 'F', N, IV,
$ WORK( 1 + (NB+1)*N ), N,
$ VL( 1, KI-IV+1 ), LDVL )
IV = 1
ELSE
IV = IV + 1
END IF
END IF
*
* Restore the original diagonal elements of T.
*
DO 120 K = KI + 1, N
T( K, K ) = WORK( K )
120 CONTINUE
*
IS = IS + 1
130 CONTINUE
END IF
*
RETURN
*
* End of ZTREVC3
*
END
|